×

zbMATH — the first resource for mathematics

Weakly nonlinear internal waves in a two-fluid system. (English) Zbl 0863.76015
We derive general evolution equations for two-dimensional weakly nonlinear waves at the free surface in a system of two fluids of different densities. The thickness of the upper fluid layer is assumed to be small compared with the characteristic wavelength, but no restrictions are imposed on the thickness of the lower layer. We consider the case of a free upper boundary for its relevance in applications to ocean dynamics problems, and the case of a non-uniform rigid upper boundary for applications to atmospheric problems.

MSC:
76B55 Internal waves for incompressible inviscid fluids
76V05 Reaction effects in flows
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wei, J. Fluid Mech. 294 pp 71– (1995)
[2] DOI: 10.1143/JPSJ.39.1082 · Zbl 1334.76027 · doi:10.1143/JPSJ.39.1082
[3] Miloh, J. Fluid Mech. 211 pp 617– (1990)
[4] Johnson, J. Fluid Mech. 54 pp 81– (1972)
[5] Grimshaw, J. Fluid Mech. 169 pp 429– (1986)
[6] Green, J. Fluid Mech. 78 pp 237– (1976)
[7] Davis, J. Fluid Mech. 29 pp 593– (1967)
[8] Choi, J. Fluid Mech 295 pp 381– (1995)
[9] Benjamin, J. Fluid Mech. 29 pp 559– (1967)
[10] Benjamin, J. Fluid Mech. 25 pp 241– (1966)
[11] Ablowitz, Stud. Appl. Maths 62 pp 249– (1980) · Zbl 0447.76013 · doi:10.1002/sapm1980623249
[12] Matsuno, Phys. Rev. 49 pp 2091– (1994) · doi:10.1103/PhysRevE.49.2091
[13] DOI: 10.1103/PhysRevA.47.4593 · doi:10.1103/PhysRevA.47.4593
[14] Matsuno, J. Fluid Mech. 249 pp 121– (1993)
[15] DOI: 10.1143/JPSJ.62.1902 · doi:10.1143/JPSJ.62.1902
[16] DOI: 10.1103/PhysRevLett.69.609 · Zbl 0968.76516 · doi:10.1103/PhysRevLett.69.609
[17] Kubota, AIAA J. Hydrodyn. 12 pp 157– (1978)
[18] DOI: 10.1143/JPSJ.30.272 · doi:10.1143/JPSJ.30.272
[19] Kadomtsev, Sov. Phys. Dokl. 15 pp 539– (1970)
[20] DOI: 10.1088/0305-4470/10/12/002 · doi:10.1088/0305-4470/10/12/002
[21] Wu, J. Fluid Mech. 184 pp 75– (1987)
[22] Wu, J. Engng Mech. Div. ASCE 107 pp 501– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.