×

Equivalential and algebraizable logics. (English) Zbl 0864.03043

The author investigates the process of algebraization of the so-called equivalential and finitely equivalential logics. His approach is based on matrix semantics. In the paper, a logic need not be finitary (i.e., have only finitary rules). As to algebraizability, the author distinguishes between finitely algebraizable logics (i.e. those admitting a finite set of equivalence formulas; finitary finitely algebraizable logics are precisely the logics algebraizable in the sense of W. J. Blok and D. Pigozzi [Algebraizable logics, Mem. Am. Math. Soc. 396 (1989; Zbl 0664.03042)]) and possibly infinitely algebraizable, or p.i.-algebraizable, ones. The main result of the paper states that a logic is finitely algebraizable (p.i.-algebraizable) iff it is finitely equivalential (resp., equivalential) and the truth predicate in the reduced matrix models is equivalentially definable. The paper contains the necessary background on equivalential and algebraizable logics. A natural example of an infinitary logic that is p.i.-algebraizable but not finitary algebraizable is presented, and known examples of nonfinitary finitely algebraizable logics are reminded.

MSC:

03G99 Algebraic logic

Citations:

Zbl 0664.03042
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, A. R., N. D. Belnap, 1975, Entailment, Princeton University Press.
[2] Blok, W. J., D. Pigozzi, 1986, ?Protoalgebraic Logics?, Studia Logica 45, 337-369. · Zbl 0622.03020 · doi:10.1007/BF00370269
[3] Blok, W. J., D. Pigozzi, 1989, ?Algebraizable Logics?, Memoirs of the Am. Math. Soc. 396. · Zbl 0664.03042
[4] Blok, W. J., D. Pigozzi, 1992, ?Algebraic Semantics for Universal Horn Logic without Equality?, in A. Romanowska, J. D. H. Smith (eds.) Universal Algebra and Quasigroup Theory, Heldermann, Berlin, 1-56. · Zbl 0768.03008
[5] Budkin, A. I., V. A. Gorbunov, 1973, ?Implicative Classes of Algebras?, Algebra and Logic 12, 139-149. · Zbl 0289.08004 · doi:10.1007/BF02218694
[6] da Costa, N., 1974, ?On the Theory of Inconsistent Formal Systems?, Notre Dame Journal of Formal Logic 15, 497-510. · Zbl 0286.02032 · doi:10.1305/ndjfl/1093891487
[7] Czelakowski, J., 1981, ?Equivalential Logics (I), (II)?, Studia Logica 40, 227-236, 355-372. · Zbl 0476.03032 · doi:10.1007/BF02584057
[8] Czelakowski, J., 1986, ?Local Deduction Theorems?, Studia Logica 45, 377-391. · Zbl 0622.03009 · doi:10.1007/BF00370271
[9] Czelakowski, J., 1994, Logic, Algebra, Consequence Operations, preliminary version.
[10] Dellunde, P., ?A Finitary 1-equivalential Logic Not Finitely Equivalential?, preliminary version. · Zbl 0841.03037
[11] Font, J. M., G. Rodrigues, 1990, ?Note on Algebraic Models for Relevance Logic?, Zeitschrift für math. Logik und Grundlagen der Math. 36, 535-540. · Zbl 0696.03004 · doi:10.1002/malq.19900360606
[12] Font, J. M., V. Verdú, 1991, ?Algebraic Logic for Classical Conjunction and Disjunction?, Studia Logica 50, 391-419. · Zbl 0753.03027 · doi:10.1007/BF00370680
[13] Herrmann, B., 1993, ?Equivalential Logics and Definability of Truth?, Ph. D. Dissertation, Freie Universität Berlin. · Zbl 0850.03023
[14] Herrmann, B., ?Characterizing Equivalential and Algebraizable Logics by the Leibniz Operator?, submitted to Studia Logica. · Zbl 0879.03023
[15] Lewin, R. A., I. F. Mikenberg, M. G. Schwarze, 1991, ?C 1 is not Algebraizable?, Notre Dame Journal of Formal Logic 32, 609-611. · Zbl 0744.03027 · doi:10.1305/ndjfl/1093635932
[16] Mortensen, C., 1980, ?Every Quotient Algebra for C 1 is Trivial?, Notre Dame Journal of Formal Logic 21, 694-700. · Zbl 0416.03029 · doi:10.1305/ndjfl/1093883254
[17] Porté, J., 1965, Recherches sur la théorie générale des systèmes formels, Gauthier-Villars, Paris.
[18] Prucnal, T., A. Wro?ski, 1974, ?An Algebraic Characterization of the Notion of Structural Completenes?, Bulletin of the Section of Logic of the Polish Academy of Sciences 3, 30-33.
[19] Rasiowa, H., 1974, An Algebraic Approach to Non-classical Logics, North-Holland, Amsterdam. · Zbl 0299.02069
[20] Wójcicki, R., 1988, Theory of Logical Calculi, Kluwer, Dordrecht. · Zbl 0682.03001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.