zbMATH — the first resource for mathematics

On special classes of \(n\)-algebras. (English) Zbl 0864.17002
The notation of \(n\)-ary algebras as a linear space is given by introducing a composition law which involves \(n\) elements: \(m:{\mathcal V}^{\otimes n}\to{\mathcal V}\). A structure theory of this algebra is developed to a large extent, establishing properties as: simple, semisimple, Abelian, nilpotent, solvable. Some detailed examples are given for the case \(\dim {\mathcal V}= 2\), \(n=3\). The relevance of \(n\)-ary algebras to physics is discussed, as their relation to Nambu-mechanics, Nambu-Lie algebras and Lie triple systems.

17A42 Other \(n\)-ary compositions \((n \ge 3)\)
17B30 Solvable, nilpotent (super)algebras
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
Full Text: DOI
[1] DOI: 10.1103/PhysRevD.7.2405 · Zbl 1027.70503 · doi:10.1103/PhysRevD.7.2405
[2] DOI: 10.1007/BF02103278 · Zbl 0808.70015 · doi:10.1007/BF02103278
[3] Takhtajan L., Alg. Anal. 6 pp 262– (1994)
[4] Kerner R., Comptes Rend. Acad. Sci. Paris Ser. II 312 pp 191– (1991)
[5] DOI: 10.1063/1.529922 · doi:10.1063/1.529922
[6] DOI: 10.1090/S0002-9947-1951-0041118-9 · doi:10.1090/S0002-9947-1951-0041118-9
[7] DOI: 10.1016/0021-8693(80)90189-1 · Zbl 0425.17007 · doi:10.1016/0021-8693(80)90189-1
[8] DOI: 10.1090/S0002-9947-1952-0045702-9 · doi:10.1090/S0002-9947-1952-0045702-9
[9] DOI: 10.1112/plms/s3-6.3.366 · Zbl 0073.01704 · doi:10.1112/plms/s3-6.3.366
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.