×

Zeta regularized products and functional determinants on spheres. (English) Zbl 0864.47024

The authors use a factorization theorem for zeta regularized products to compute the functional determinant of the Laplacian on the sphere \(S^n\) with the standard metric. They also determine the functional determinant of the conformal Laplacian on an even-dimensional sphere. The computations in this paper agree with those of T. P. Branson and B. Ørsted [Proc. Am. Math. Soc. 113, No. 3, 669-682 (1991; Zbl 0762.47019)]. The authors list the values of the functional determinant for the ordinary Laplacian in dimensions \(n=2,3,4,5,6\) and for the conformal Laplacian in dimensions \(4,6,8\).
Reviewer: P.Gilkey (Eugene)

MSC:

47F05 General theory of partial differential operators
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

Citations:

Zbl 0762.47019
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] E.W. Barnes, The theory of the multiple gamma function , Trans. Cambridge Philos. Soc. 19 (1904), 374-425. · JFM 35.0462.01
[2] T.P. Branson, S-Y.A. Chang and P. Yang, Estimates and extremal problems for zeta function determinants on four-manifolds , · Zbl 0761.58053
[3] T.P. Branson and B. Orsted, Explicit functional determinants in four dimensions , Proc. Amer. Math. Soc. 113 (1991), 669-682. JSTOR: · Zbl 0762.47019
[4] W.F. Donoghue, Jr., Distributions and Fourier transforms , Academic Press, New York, 1969. · Zbl 0188.18102
[5] D.B. Ray and I.M. Singer, \(R\)-torsion and the Laplacian on Riemannian manifolds , Adv. Math. 7 (1974), 145-210. · Zbl 0239.58014
[6] B. Osgood, R. Philips and P. Sarnak, Extremals of determinants of Laplacians , J. Funct. Anal. 80 (1988), 148-211. · Zbl 0653.53022
[7] J.R. Quine, S.H. Heydari and R.Y. Song, Zeta regularized products , Trans. Amer. Math. Soc. 338 (1993), 213-231. · Zbl 0774.30030
[8] I. Vardi, Determinants of Laplacians and multiple gamma functions , SIAM J. Math. Anal. 19 (1988), 493-507. · Zbl 0641.33003
[9] ——–, Computational recreations in Mathematica , Addison-Wesley, Redwood City, 1991. · Zbl 0786.11002
[10] M.F. Vignéras, L’Équation Fonctionelle de la Fonction Zeta de Selberg du Groupe Modulaire \(PSL(2,Z)\), Astérisque 61 (1979), 235-249. · Zbl 0401.10036
[11] A. Voros, Spectral functions, special functions and the Selberg zeta function , Commun. Math. Phys. 110 (1987), 439-465. · Zbl 0631.10025
[12] W.I. Weisberger, Normalization of the path integral measure and the coupling constants for bosonic strings , Nuclear Phys. B 284 (1987), 171-200.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.