×

The geometry of degree-4 characteristic classes and of line bundles on loop spaces. II. (English) Zbl 0864.57026

This paper is the sequel of Part I [the authors, ibid. 75. No. 3, 603-638 (1994; Zbl 0844.57025)]. The authors continue the study begun there. The program is to find and explore some geometric objects (as the 2-gerbes) which represent classes \(\alpha\in H^4(BG; \mathbb{Z})\), where \(G\) is a compact Lie group.
The authors construct the 2-gerbe associated to a class \(\alpha\) in the cases where \(G=S^1\) and where \(G\) is a finite group. They derive the Weil reciprocity law for Riemann surfaces as a special case of the Segal-Witten reciprocity law, which was proved in Part I. By considering a holomorphic line bundle with Hermitian structure over a complex manifold the authors study the compatibility between the Chern class \(\widehat C_2\) (depending only on the holomorphic structure) and the differential character of Chern-Cheeger-Simons \(\widetilde C_2^\nabla\) (associated to the connection \(\nabla\) compatible with both the holomorphic structure and the Hermitian structure). For a proper holomorphic fibration \(f:X\to Y\) whose fibers are connected Riemann surfaces of genus \(g\geq 2\) and for a Hermitian holomorphic vector bundle \(E\to X\), the compatibility between the classes \(\widehat C_2\) and \(\widetilde C^\nabla_2\) can be “pushed forward” along the fibers of \(f\) to produce a metrized line bundle on \(Y\). By an ingenious interpretation of the Narasimhan-Seshadri Theorem the authors apply the above ideas to construct the Quillen metric on a determinant line bundle over the moduli space \({\mathcal M} (r, {\mathcal L})\) of stable bundles of rank \(r\) and fixed determinant \({\mathcal L}\) on a Riemann surface, in the case where \((r,\deg {\mathcal L})=1\). The paper is rich in technical details and uses with competence the numerous references.

MSC:

57R40 Embeddings in differential topology
57T10 Homology and cohomology of Lie groups
32L05 Holomorphic bundles and generalizations

Citations:

Zbl 0844.57025
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces , Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615. JSTOR: · Zbl 0509.14014
[2] A. A. Beilinson, Higher regulators and values of \(L\)-functions , J. Soviet Math. 30 (1985), 2036-2070. · Zbl 0588.14013
[3] S. Bloch, Deligne groups , unpublished manuscript, 1972.
[4] R. Bott and L. Tu, Differential Forms in Algebraic Topology , Graduate Texts in Math., Springer-Verlag, Berlin, 1986.
[5] L. Breen, Bitorseurs et cohomologie non abélienne , The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 401-476. · Zbl 0743.14034
[6] L. Breen, Théorie de Schreier supérieure , Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 465-514. · Zbl 0795.18009
[7] L. Breen, On the classification of \(2\)-gerbes and \(2\)-stacks , Astérisque (1994), no. 225, 160. · Zbl 0818.18005
[8] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization , Progress in Mathematics, vol. 107, Birkhäuser Boston Inc., Boston, MA, 1993. · Zbl 0823.55002
[9] J.-L. Brylinski and D. A. McLaughlin, The geometry of degree four characteristic classes and of line bundles on loop spaces I , Duke Math. J. 75 (1994), no. 3, 603-638. · Zbl 0844.57025
[10] J.-L. Brylinski and D. A. McLaughlin, Čech cocycles for characteristic classes , to appear in Comm. Math. Phys.
[11] J.-L. Brylinski and D. A. McLaughlin, Holomorphic quantization and unitary representations of the Teichmüller group , Lie Theory and Geometry, Progr. Math., vol. 123, Birkhauser, Boston, 1994, in Honor of Bertram Kostant, pp. 21-64. · Zbl 0846.58030
[12] J.-L. Brylinski and D. A. McLaughlin, A geometric construction of the first Pontryagin class , Quantum Topology, Ser. Knots Everything, vol. 3, World Scientific, River Edge, N.J., 1993, pp. 209-220. · Zbl 0837.57022
[13] J. Cheeger and J. Simons, Differential characters and geometric invariants , Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Math., vol. 1167, Springer-Verlag, Berlin, 1985, pp. 50-80. · Zbl 0621.57010
[14] P. Deligne, Le symbole modéré , Inst. Hautes Études Sci. Publ. Math. (1991), no. 73, 147-181. · Zbl 0749.14011
[15] P. Deligne, Seminar on WZW theories , Institute for Advanced Study, Princeton University, 1991, spring.
[16] P. Deligne, Le déterminant de la cohomologie , Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93-177. · Zbl 0629.14008
[17] R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, The operator algebra of orbifold models , Comm. Math. Phys. 123 (1989), no. 3, 485-526. · Zbl 0674.46051
[18] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology , Comm. Math. Phys. 129 (1990), no. 2, 393-429. · Zbl 0703.58011
[19] S. Donaldson, A new proof of a theorem of Narasimhan and Seshadri , J. Differential Geom. 18 (1983), no. 2, 269-277. · Zbl 0504.49027
[20] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques , Invent. Math. 97 (1989), no. 1, 53-94. · Zbl 0689.14012
[21] S. Eilenberg and S. Mac Lane, Cohomology theory in abstract groups II , Ann. of Math. (2) 48 (1947), 326-341. JSTOR: · Zbl 0029.34101
[22] H. Esnault and E. Viehweg, Deligne-Beilinson cohomology , Beilinson’s conjectures on special values of \(L\)-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43-91. · Zbl 0656.14012
[23] D. Freed and F. Quinn, Chern-Simons theory with finite gauge group , Comm. Math. Phys. 156 (1993), no. 3, 435-472. · Zbl 0788.58013
[24] I. Gelfand and M. Smirnov, The algebra of Chern-Simons classes, the Poisson bracket on it, and the action of the gauge group , Lie Theory and Geometry, Progr. Math., vol. 123, Birkhäuser, Boston, 1994, in Honor of Bertram Kostant, pp. 261-288. · Zbl 0842.58025
[25] J. Giraud, Cohomologie Non-abélienne , Ergeb. Math. Grenzgeb. (3), vol. 64, Springer-Verlag, Berlin, 1971. · Zbl 0226.14011
[26] P. Griffiths and J. Harris, Principles of Algebraic Geometry , Wiley-Interscience, New York, 1978. · Zbl 0408.14001
[27] F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div” , Math. Scand. 39 (1976), no. 1, 19-55. · Zbl 0343.14008
[28] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II , Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Wiley-Interscience, New York-London-Sydney, 1969. · Zbl 0175.48504
[29] B. Kostant, Quantization and unitary representations. I. Prequantization , Lectures in Modern Analysis and Applications III, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, 1970, pp. 87-208. · Zbl 0223.53028
[30] B. Mazur and W. Messing, Universal Extensions and One-Dimensional Crystalline Cohomology , Lecture Notes in Math., vol. 370, Springer-Verlag, Berlin, 1974. · Zbl 0301.14016
[31] D. A. McLaughlin, Orientation and string structures on loop space , Pacific J. Math. 155 (1992), no. 1, 143-156. · Zbl 0739.57012
[32] M. S. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface , Ann. of Math. (2) 82 (1965), 540-567. JSTOR: · Zbl 0171.04803
[33] A. Pressley and G. Segal, Loop Groups , Oxford Mathematical Monographs, Clarendon Press, Oxford, 1986. · Zbl 0618.22011
[34] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface , Funct. Anal. Appl. 19 (1985), 31-34. · Zbl 0603.32016
[35] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve , Math. Ann. 200 (1973), 69-84. · Zbl 0239.14013
[36] G. Segal, January 1990, Lecture at Mathematical Sciences Research Institute, Berkeley.
[37] G. Segal, Classifying spaces and spectral sequences , Inst. Hautes Études Sci. Publ. Math. (1968), no. 34, 105-112. · Zbl 0199.26404
[38] 1 G. B. Segal, The definition of conformal field theory , · Zbl 0657.53060
[39] 2 G. B. Segal, The definition of conformal field theory , Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250, Kluwer, Dordrecht, 1988, pp. 165-171. · Zbl 0657.53060
[40] C. Seshadri, Space of unitary vector bundles on a compact Riemann surface , Ann. of Math. (2) 85 (1967), 303-336. JSTOR: · Zbl 0173.23001
[41] H. X. Sinh Thèse de Doctorat, Univ. Paris 7, 1975.
[42] A. Weil, Introduction à l’étude des variétés kählériennes , Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958. · Zbl 0137.41103
[43] E. Witten, Free fermions on an algebraic curve , The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, 1988, pp. 329-344. · Zbl 0658.14013
[44] E. Witten, Quantum field theory and the Jones polynomial , Comm. Math. Phys. 121 (1989), no. 3, 351-399. · Zbl 0667.57005
[45] S. Zucker, The Cheeger-Simons invariant as a Chern class , Algebraic Analysis, Geometry and Number Theory (Baltimore, MD, 1988), Johns Hopkins University Press, Baltimore, 1989, pp. 397-417. · Zbl 0790.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.