zbMATH — the first resource for mathematics

Continuous meshless approximations for nonconvex bodies by diffraction and transparency. (English) Zbl 0864.73076
Summary: Continuous meshless approximations are developed for domains with non-convex boundaries, with emphasis on cracks. Two techniques are developed in the context of the element-free Galerkin method: a transparency method wherein smooth approximations are generated by making boundaries partially transparent, and a diffraction method, where the domain of influence wraps around a concave boundary. They are compared to the original method based on the visibility criterion in which the approximations are discontinuous in the vicinity of nonconvex boundaries. The performance of the methods is compared using two elastostatic examples: an infinite plate with a hole and a crack problem.

74S30 Other numerical methods in solid mechanics (MSC2010)
74R99 Fracture and damage
Full Text: DOI
[1] Anderson, T. L. 1991: Fracture Mechanics: Fundamental and Applications (First ed.). CRC Press
[2] Atluri, S. N.; Kobayashi, A. S.; Nakagaki, M. 1975: An assumed displacement hybrid finite element model for linear fracture mechanics. International Journal of Fracture 11 (2): 257-271 · Zbl 0312.73114 · doi:10.1007/BF00038893
[3] Babuska, I.; Melenk, J. M. (in preparation). The partition of unity finite element method
[4] Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K. (to appear). Smoothing and accelerated computations in the element-free Galerkin method. Journal of Computational and Applied Mathematics · Zbl 0862.73058
[5] Belytschko, T.; Lu, Y. Y.; Gu, L. 1994: Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 37, 229-256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[6] Belytschko, T.; Lu, Y. Y.; Gu, L.; Tabbara, M. 1995: Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures 32 (17), 2547-2570 · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[7] Benzley, S. E. 1974: Representation of singularities with isoparametric finite elements. International Journal for Numerical Methods in Engineering 8: 537-545 · Zbl 0282.65087 · doi:10.1002/nme.1620080310
[8] Duarte, C. A.; Oden, J. T. 1995: Hp clouds ? a meshless method to solve boundary-value problems. Technical Report 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin
[9] Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T. (submitted): Enriched element-free Galerkin methods for singular fields. International Journal for Numerical Methods in Engineering
[10] Hegen, D. 1994: Numerical techniques for the simulation of crack growth. Technical report, Eindhoven University of Technology. Final report of the postgraduate programme Mathematics for Industry
[11] Krysl, P.; Belytschko, T. (submitted): Nonconforming element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering · Zbl 0841.73064
[12] Lancaster, P.; Salkauskas, K. 1981: Surfaces generated by moving least squares methods. Mathematics of Computation 37: 141-158 · Zbl 0469.41005 · doi:10.1090/S0025-5718-1981-0616367-1
[13] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. 1995: Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering 38, 1655-1679 · Zbl 0840.73078 · doi:10.1002/nme.1620381005
[14] Liu, W. K.; Li, S.; Belytschko, T. (submitted): Moving least square kernel method, methodology and convergence. Computer Methods in Applied Mechanics and Engineering · Zbl 0883.65088
[15] Moran, B.; Shih, C. F. 1987: Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics 27(6): 615-641 · doi:10.1016/0013-7944(87)90155-X
[16] Nayroles, B.; Touzot, G.; Villon, P. 1992: Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics 10: 307-318 · Zbl 0764.65068 · doi:10.1007/BF00364252
[17] Nikishkov, G. P.; Atluri, S. N. 1987: An Equivalent Domain Integral Method for Computing Crack-Tip Parameters in Non-elastic Thermo-mechanical Fracture. Engineering Fracture Mechanics, 26: 851-868 · doi:10.1016/0013-7944(87)90034-8
[18] Strang, G.; Fix, G. 1973: An Analysis of the Finite Element Method. Englewood Cliffs, N. J.: Prentice-Hall · Zbl 0356.65096
[19] Terry, T. 1994: Fatigue crack propagation modeling using the element-free Galerkin method. Masters thesis, Northwestern University
[20] Timoshenko, S. P.; Goodier, J. N. 1970: Theory of Elasticity (Third ed.). New York: McGraw Hill · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.