zbMATH — the first resource for mathematics

Optimal stopping, free boundary, and American option in a jump-diffusion model. (English) Zbl 0866.60038
Summary: This paper considers the American put option valuation in a jump-diffusion model and relates this optimal-stopping problem to a parabolic integro-differential free-boundary problem, with special attention to the behavior of the optimal-stopping boundary. We study the regularity of the American option value and obtain in particular a decomposition of the American put option price as the sum of its counterpart European price and the early exercise premium. Compared with the Black-Scholes (BS) model [see F. Block and M. Scholes, J. Polit. Econ. 81, 637-659 (1973)], this premium has an additional term due to the presence of jumps. We prove the continuity of the free boundary and also give one estimate near maturity, generalizing a recent result of G. J. Barles, J. Burdeau, M. Romana and N. Samsoen [Math. Finan. 5, No. 2, 77-95 (1995)] for the BS model. Finally, we study the effect of the market price of jump risk and the intensity of jumps on the American put option price and its critical stock price.

60G40 Stopping times; optimal stopping problems; gambling theory
91B28 Finance etc. (MSC2000)
93E20 Optimal stochastic control
Full Text: DOI
[1] Aase, K. K. (1988), Contingent Claims Valuation When the Security Price is a Combination of an Itô Process and a Random Point Process, Stochastic Process. Appl., 28, 185–220. · Zbl 0645.90009 · doi:10.1016/0304-4149(88)90096-8
[2] Ahn, C. M., and H. E. Thompson (1992), The Impact of Jump Risks on Nominal Interest Rates and Foreign Exchange Rates, Rev. Quant. Finan. Account., 2, 17–31. · doi:10.1007/BF00243982
[3] Barles, G., J. Burdeau, M. Romano, and N. Samsoen (1995), Critical Stock Price Near Expiration, Math. Finan., 5(2), 77–95. · Zbl 0866.90029 · doi:10.1111/j.1467-9965.1995.tb00103.x
[4] Bensoussan, A., and J. L. Lions (1978), Applications des Inéquations Variationnelles en Contrôle stochastique, Dunod, Paris. · Zbl 0411.49002
[5] Black, F., and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, J. Polit. Econ., 81, 637–659. · Zbl 1092.91524 · doi:10.1086/260062
[6] Carr, P., R. Jarrow, and R. Myneni (1992), Alternative Characterizations of American Put Options, Math. Finan., 2, 87–106. · Zbl 0900.90004 · doi:10.1111/j.1467-9965.1992.tb00040.x
[7] Colwell, D. B., and R. J. Elliott (1993), Discontinuous Asset Prices and Non-Attainable Contingent Claims, Math. Finan., 3(3), 295–308. · Zbl 0884.90021 · doi:10.1111/j.1467-9965.1993.tb00046.x
[8] El Karoui, N., A. Millet, and J. P. Lepeltier (1992), A Probabilistic Approach to the Réduite in Optimal Stopping, Probab. Math. Statist., 13, 97–121. · Zbl 0777.60034
[9] Friedman, A. (1975), Parabolic Variational Inequalities in One Space Dimension and Smoothness of the Free Boundary, J. Funct. Anal. 18, 151–176. · Zbl 0295.35045 · doi:10.1016/0022-1236(75)90022-1
[10] Friedman, A., and M. Robin (1978), The Free Boundary for Variational Inequalities with Nonlocal Operators, SIAM J. Control Optim., 16(2), 347–372. · Zbl 0378.93050 · doi:10.1137/0316022
[11] Harrison, J. M., and D. M. Kreps (1979), Martingale and Arbitrage in Multiperiods Securities Markets, J. Econ. Theory, 20, 381–408. · Zbl 0431.90019 · doi:10.1016/0022-0531(79)90043-7
[12] Harrison, J. M., and S. R. Pliska (1981), Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stochastic Process. Appl., 11, 215–260. · Zbl 0482.60097 · doi:10.1016/0304-4149(81)90026-0
[13] Jacka, S. (1991), Optimal Stopping and the American Put, Math. Finan., 1, 1–14. · Zbl 0900.90109 · doi:10.1111/j.1467-9965.1991.tb00007.x
[14] Jacod, J. (1979), Calcul Stochastique et Problèmes de Martingales, Lectures Notes in Mathematics, vol. 714, Springer-Verlag, Berlin. · Zbl 0414.60053
[15] Jaillet, P., D. Lamberton, and B. Lapeyre (1990), Variational Inequalities and the Pricing of American Options, Acta Appl. Math., 21, 263–289. · Zbl 0714.90004 · doi:10.1007/BF00047211
[16] Jorion, P. (1988), On Jump Processes in the Foreign Exchange and Stock Markets, Rev. Finan. Stud., 4, 427–445. · doi:10.1093/rfs/1.4.427
[17] Kim, I. J. (1990), The Analytic Valuation of American Options, Rev. Finan. Stud., 3, 547–572. · doi:10.1093/rfs/3.4.547
[18] Ladyzenskaja, O. A., V. A. Solonnikov, and N. N. Ural’ceva (1968), Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, RI.
[19] Lamberton, D. (1994), Critical Price for an American Option near Maturity, Preprint, Université Marne la Vallée. · Zbl 0830.60037
[20] Lions, P. L. (1983), Optimal Control of Diffusion Processes and Hamilton-Jacobi-Bellman Equations. Part 1: The Dynamic Programming Principle and Applications and Part 2: Viscosity Solutions and Uniqueness, Comm. Partial Differential Equations, 8, 1101–1174 and 1229–1276. · Zbl 0716.49022 · doi:10.1080/03605308308820297
[21] Maingueneau, M. A. (1978), Temps d’Arrêts Optimaux et Théorie Générale, Séminaire de Probabilités XII, Lecture Notes in Mathematics, vol. 649, Springer-Verlag, Berlin, pp. 457–467.
[22] McKean, H. P., Jr. (1965), Appendix: a Free Boundary Problem for the Heat Equation Arising from a Problem in Mathematical Economics, Indust. Manage. Rev., 6, 32–39.
[23] Merton, R. (1973), Theory of Rational Option Pricing, Bell J. Econ. Manage. Sci., 4, 141–183. · Zbl 1257.91043 · doi:10.2307/3003143
[24] Merton, R. (1976), Option Pricing when the Underlying Stock Returns are Discontinuous, J. Finan. Econ., 5, 125–144. · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[25] Meyer, P. A. (1976), Un Cours sur les Intégrales Stochastiques, Lecture Notes in Mathematics, vol. 511, Springer-Verlag, Berlin, 245–398.
[26] Myneni, R. (1992), The Pricing of American Option, Ann. Appl. Probab., 2, 1–23. · Zbl 0753.60040 · doi:10.1214/aoap/1177005768
[27] Naik, V., and M. Lee (1990), General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns, Rev. Finan. Stud., 3, 493–521. · doi:10.1093/rfs/3.4.493
[28] Pham, H. (1995), Applications des Methodes Probabilistes et de Contrôle Stochastique aux Mathematiques Financières, Part III, Doctoral dissertation, Université Paris IX Dauphine.
[29] Pham, H. (1995), Optimal Stopping of Controlled Jump Diffusion Processes: a Viscosity Solution Approach, C. R. Acad. Sci. Sér. I, 320, 1113–1118, Forthcoming in J. Math. System Estim. Control. · Zbl 0991.93564
[30] Shiryaev, A. N. (1978), Optimal Stopping Rules, Springer-Verlag, New York. · Zbl 0391.60002
[31] Van Moerbeke, P. (1976), On Optimal Stopping and Free Boundary Problems, Arch. Rational Mech. Anal., 60, 101–148. · Zbl 0336.35047 · doi:10.1007/BF00250676
[32] Zhang, X. (1994), Analyse Numérique des Options Américaines dans un Modèle de Diffusion avec des Sauts, Doctoral dissertation, Ecole Nationale des Ponts et Chaussées.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.