×

zbMATH — the first resource for mathematics

Asymptotic behaviour of Stieltjes polynomials for ultraspherical weight functions. (English) Zbl 0867.42011
This paper is concerned with the Stieltjes polynomials \(E^{(\lambda)}_{n+1}(x)\) defined by \[ \int^1_{-1}w_\lambda(x)P^{(\lambda)}_n(x)E^{(\lambda)}_{n+1}(x)x^kdx=0,\quad k=0,1,2,\dots,n, \] where \(w_\lambda(x)=(1-x^2)^{\lambda-1/2}\), \(\lambda>-1/2\), is the ultraspherical weight function and \(P^{(\lambda)}_n(x)\) are the ultraspherical polynomials. The author gives an asymptotic representation of \(E^{(\lambda)}_{n+1}(\cos\vartheta)\), as \(n\to\infty\), in the case \(1<\lambda\leq 2\). This representation, which holds uniformly for \(\varepsilon\leq\vartheta\leq\pi-\varepsilon\), \(\varepsilon>0\), completes the study of the ultraspherical weight functions for which Stieltjes polynomials are known to have only real distinct zeros inside \((-1,1)\) for all \(n\). The asymptotic behaviour obtained is successfully applied in proving interesting positivity results for Kronrod extensions of Gauss and Lobatto quadrature rules.

MSC:
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C55 Spherical harmonics
41A55 Approximate quadratures
Software:
QUADPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baillaud, B.; Bourget, H., Correspondance d’Hermite et de Stieltjes I, II, (1905), Gauthier-Villars Paris
[2] Brass, H., Quadraturverfahren, (1977), Vandenhoeck und Ruprecht Göttingen · Zbl 0368.65014
[3] Ehrich, S., Asymptotic properties of Stieltjes polynomials and Gauss-kronrod quadrature formulae, J. approx. theory, 82, 287-303, (1995) · Zbl 0828.41019
[4] Gautschi, W., Gauss-kronrod quadrature — a survey, (), 39-66
[5] Gautschi, W.; Notaris, S.E., Problem 6, (), 379-380
[6] Hardy, G.H., Divergent series, (1949), Oxford University Press Oxford · Zbl 0032.05801
[7] Monegato, G., A note on extended Gaussian quadrature rules, Math. comput., 30, 812-817, (1976) · Zbl 0345.65010
[8] Monegato, G., Positivity of weights of extended Gauss-Legendre quadrature rules, Math. comput., 32, 243-245, (1978) · Zbl 0378.65017
[9] Monegato, G., An overview of results and questions related to kronrod schemes, (), 231-240
[10] Monegato, G., Stieltjes polynomials and related quadrature rules, SIAM rev., 24, 137-158, (1982) · Zbl 0494.33010
[11] Notaris, S.E., Gauss-kronrod quadrature formulae for weight functions of Bernstein-szegő type, II, J. comp. appl. math., 29, 161-169, (1990) · Zbl 0697.41017
[12] Peherstorfer, F., On Stieltjes polynomials and Gauss-kronrod quadrature, Math. comput., 55, 649-664, (1990) · Zbl 0709.65016
[13] Peherstorfer, F., On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-kronrod quadrature formulas, J. approx. theory, 70, 156-190, (1992) · Zbl 0760.41020
[14] Piessens, R.; de Doncker, E.; Überhuber, C.; Kahaner, D.K., QUADPACK — A subroutine package for automatic integration, () · Zbl 0508.65005
[15] Rabinowitz, P., The exact degree of precision of generalized Gauss-kronrod integration rules, Math. comput., 35, 1275-1283, (1980) · Zbl 0461.65019
[16] Rabinowitz, P., On the definiteness of Gauss-kronrod integration rules, Math. comput., 46, 225-227, (1986) · Zbl 0619.41024
[17] Szegő, G., Über gewisse orthogonale polynome, die zu einer oszillierenden belegungsfunktion gehören, Math. ann., 110, 501-513, (1934) · JFM 60.1038.01
[18] (Collected Papers, R. Askey, Ed., Vol. 2, 545-557)
[19] Szegő, G., Orthogonal polynomials, () · JFM 65.0278.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.