Electron counting statistics and coherent states of electric current. (English) Zbl 0868.60099

Summary: A theory of electron counting statistics in quantum transport is presented. It involves an idealized scheme of current measurement using a spin 1/2 coupled to the current so that it processes at the rate proportional to the current. Within such an approach, counting charge without breaking the circuit is possible. As an application, we derive the counting statistics in a single channel conductor at finite temperature and bias. For a perfectly transmitting channel the counting distribution is Gaussian, both for zero-point fluctuations and at finite temperature. At constant bias and low temperature the distribution is binomial, i.e., it arises from Bernoulli statistics. Another application considered is the noise due to short current pulses that involve few electrons. We find the time-dependence of the driving potential that produces coherent noise-minimizing current pulses, and display analogies of such current states with quantum-mechanical coherent states.


60K40 Other physical applications of random processes
81R30 Coherent states
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI arXiv


[1] Lesovik G. B., JETP Lett. 49 pp 594– (1989)
[2] DOI: 10.1103/PhysRevB.41.8184
[3] DOI: 10.1103/PhysRevB.46.12485
[4] DOI: 10.1103/PhysRevB.46.12485
[5] DOI: 10.1016/0038-1098(92)90760-7
[6] DOI: 10.1103/PhysRevB.46.1889
[7] DOI: 10.1103/PhysRevB.45.1742
[8] DOI: 10.1103/PhysRevB.46.13400
[9] Levitov L. S., JETP Lett. 58 pp 230– (1993)
[10] Ivanov D. A., JETP Lett. 58 pp 461– (1993)
[11] Altshuler B. L., JETP Lett. 59 pp 857– (1994)
[12] Altshuler B. L., Russian, Pis’ma ZhETF, 59 pp 821– (1994)
[13] DOI: 10.1103/PhysRevLett.72.538
[14] DOI: 10.1103/RevModPhys.37.231
[15] DOI: 10.1103/RevModPhys.37.231
[16] DOI: 10.1103/RevModPhys.37.231
[17] DOI: 10.1103/PhysRevB.26.74
[18] DOI: 10.1016/0375-9601(92)90003-5
[19] DOI: 10.1143/PTPS.69.80
[20] DOI: 10.1103/PhysRevB.27.6178
[21] DOI: 10.1103/PhysRevB.27.6178
[22] DOI: 10.1103/PhysRev.182.479
[23] DOI: 10.1088/0022-3719/14/19/010
[24] DOI: 10.1103/PhysRevLett.18.1049
[25] DOI: 10.1103/PhysRev.178.1084
[26] Belavin A. A., Pis’ma ZhETF 22 pp 503– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.