zbMATH — the first resource for mathematics

Quantum affine algebras and deformations of the Virasoro and \({\mathcal W}\)-algebras. (English) Zbl 0869.17014
There is a description of the center \(Z_h(\widehat{sl}_2)\) of a completion \(\widetilde{U}_h (\widehat{sl}_2)_{cr}\) of the quantum affine algebra \(U_q (\widehat{sl}_2)\) at the critical level, its Poisson structure and spectrum. A homomorphism of \(\widetilde{U}_h (\widehat{sl}_2)_{cr}\) to the tensor product of a certain Heisenberg algebra and a Heisenberg-Poisson algebra \({\mathfrak H}(sl_2)\) are constructed such that the restriction to the center is a homomorphism of Poisson algebras, which is a \(q\)-deformation of the Miura transformation. By a computation of Poisson brackets, it turns out that the Poisson structure of \(Z_h (\widehat{sl}_2)\) is closely related to a \(q\)-deformation of the classical Virasoro algebra.
In the last part of the paper the results are generalized to the case of \(\widetilde{U}_h (\widehat{sl}_N)_{cr}\), and there is a conjecture that analogous results may be obtained in the general case of an arbitrary simple Lie algebra \({\mathfrak g}\), a central subalgebra \(Z_h(\widehat {\mathfrak g})\) of \(\widetilde{U}_h (\widehat{\mathfrak g})_{cr}\) and the Heisenberg-Poisson algebra \({\mathfrak H}_h ({\mathfrak g})\).

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B68 Virasoro and related algebras
17B81 Applications of Lie (super)algebras to physics, etc.
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] Feigin, B., Frenkel, E.: Int. J. Mod. Phys.A7, Supplement 1A, 197–215 (1992); Frenkel, E.: Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction. Ph.D. Thesis, Harvard University, 1991 · Zbl 0925.17022 · doi:10.1142/S0217751X92003781
[2] Drinfeld, V.G., Sokolov, V.V.: Sov. Math. Dokl.23, 457–462 (1981); J. Sov. Math.30, 1975–2035 (1985)
[3] Beilinson, A.A., Drinfeld, V.G.: Quantization of Hitchin’s fibration and Langlands program. Preprint (1994) · Zbl 0864.14007
[4] Wakimoto, M.: Commun. Math. Phys.104, 605–609 (1986) · Zbl 0587.17009 · doi:10.1007/BF01211068
[5] Feigin, B., Frenkel, E.: Uspekhi Matem. Nauk43, N5, 227–228 (1988) [English translation: Russ. Math. Surveys43, N5, 221–222 (1988)]; Commun. Math. Phys.128, 161–189 (1990)
[6] Frenkel, E.: Free field realizations in representation theory and conformal field theory. To appear in Proceedings of the International Congress of Mathematicians, Zürich 1994 · Zbl 0852.17023
[7] Feigin, B., Frenkel, E., Reshetikhin, N.: Commun. Math. Phys.166, 27–62 (1994) · Zbl 0812.35103 · doi:10.1007/BF02099300
[8] Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz. To appear in Proceedings of the International Congress on Mathematical Physics, Paris 1994 · Zbl 1052.17504
[9] Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Lett. Math. Phys.19, 133–142 (1990) · Zbl 0692.22011 · doi:10.1007/BF01045884
[10] Ding, J., Etingof, P.: Math. Res. Lett.1, 469–480 (1994)
[11] Drinfeld, V.G.: Sov. Math. Dokl.36, 212–216 (1987)
[12] Ding, J., Frenkel, I.: Commun. Math. Phys.156, 277–300 (1993) · Zbl 0786.17008 · doi:10.1007/BF02098484
[13] Shiraishi, J.: Phys. Lett.A171, 243–248 (1992); Matsuo, A.: Phys. Lett.B308, 26–265 (1993); Abada, A., Bougourzi, A.H., El Gradechi, M.A.: Mod. Phys. Lett.A8, 515–724 (1993); Kimura, K.: Preprint RIMS-910 (1992) · doi:10.1016/0375-9601(92)90635-Y
[14] Awata, H., Odake, S., Shiraishi, J.: Commun. Math. Phys.162, 61–83 (1994) · Zbl 0797.17009 · doi:10.1007/BF02105187
[15] Baxter, R.J.: Ann. Phys.70, 193–228 (1972); Baxter, R.J.: Exactly Solved Models of Statistical Mechanics. London, New York: Academic Press, 1982 · Zbl 0236.60070 · doi:10.1016/0003-4916(72)90335-1
[16] Lieb, E.H.: Phys. Rev.162, 162–172 (1967); Sutherland, B.: Phys. Rev. Lett.19, 103–104 (1967) · doi:10.1103/PhysRev.162.162
[17] Sklyanin, E.K.: Zapiski Nauch. Sem. LOMI164, 151–169 (1987) [English translation: J. Sov. Math.47, 2473–2488 (1989); In: Quantum Groups and Quantum Integrable Systems, ed. Mo-Lin Ge, Singapore: World Scientific, 1992, pp. 63–97
[18] Kulish, P.P., Reshetikhin, N.Yu.: J. Exper. Theor. Phys.80, 214–228 (1981)
[19] Reshetikhin, N.Yu.: Lett. Math. Phys.7, 205–213 (1983); Theor. Math. Phys.63, 559–569 (1985); Lett. Math. Phys.14, 235–246 (1987) · doi:10.1007/BF00400435
[20] Reshetikhin, N.Yu.: Habilitation Thesis, LOMI (1988)
[21] Bazhanov, V.V., Reshetiknin, N.Yu.: J. Phys.A23, 1477–1492 (1990); Kirillov, A.N., Reshetikhin, N.Yu.: unpublished · Zbl 0712.17024 · doi:10.1088/0305-4470/23/9/012
[22] Kuniba, A., Suzuki, J.: Analytic Bethe Ansatz for fundamental representations of Yangians. Preprint hep-th/9406180 (1994) · Zbl 0834.58045
[23] Frenkel, E., Reshetikhin, N.: In preparation
[24] Drinfeld, V.G.: Sov. Math. Dokl.32, 254–258 (1985)
[25] Jimbo, M.: Lett. Math. Phys.10, 63–69 (1985) · Zbl 0587.17004 · doi:10.1007/BF00704588
[26] Khoroshkin, S., Tolstoy, V.: J. Geom. Phys.11, 445–452 (1993); Connection of Drinfeld’s and Cartan-Weyl realizations for quantum affine algebras. Preprint hep-th/9404036 (1994) · Zbl 0784.17022 · doi:10.1016/0393-0440(93)90070-U
[27] Beck, J.: Commun. Math. Phys.165, 555–568 (1994) · Zbl 0807.17013 · doi:10.1007/BF02099423
[28] Levendorsky, S., Soibelman, Ya., Stukopin, V.: Lett. Math. Phys.27, 253–264 (1993) · Zbl 0776.17011 · doi:10.1007/BF00777372
[29] Faddeev, L.D.: In: Recent Advances in Field Theory and Statistical Mechanics, Les Houches, 1982, eds. J.-B. Zuber, R. Stora, Elsevier Science Publishers, 1984, pp. 563–608
[30] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Algebra and Analysis1, 118–206 (1989) In: Integrable Systems, Adv. Ser. in Math. Phys.10, Singapore: World Scientific, 1989, pp. 299–309
[31] Frenkel, I.B., Reshetikhin, N.Yu.: Commun. Math. Phys.146, 1–60 (1992) · Zbl 0760.17006 · doi:10.1007/BF02099206
[32] Jimbo, M., Miwa, T.: Algebraic analysis of solvable lattice models. CBMS Regional Conference Series in Mathematics, vol.85, Providence, RI: AMS, 1994 · Zbl 0818.39004
[33] Kirillov, A.N., Reshetikhin, N.Yu.: Zapiski Nauch. Sem. LOMI145, 109–133 (1985)
[34] Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.S.: Lett. Math. Phys.5, 393–403 (1981) · Zbl 0502.35074 · doi:10.1007/BF02285311
[35] Chari, V., Pressley, A.N.: A Guide to Quantum Groups. Cambridge: Cambridge University Press, 1994 · Zbl 0839.17009
[36] Ogievetsky, E., Reshetikhin, N., Wiegmann, P.: Nucl. Phys.280, 45–96 (1987); Bazhanov, V.V., Reshetikhin, N.Yu.: Progr. Theor. Phys. Suppl.102, 301–318 (1990) · doi:10.1016/0550-3213(87)90138-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.