Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. (English) Zbl 0869.35105

Interaction of an electron with its own electromagnetic field is described by the Maxwell-Dirac (M-D) equations. They are written as: \[ (i\gamma^\mu\partial_\mu- i\gamma^\mu A_\mu)\psi- m\psi= 0,\quad \partial_\mu A^\mu=0,\quad 4\pi\partial_\mu\partial^\mu A^\nu= J^\nu\quad\text{in }\mathbb{R}\times\mathbb{R}^3, \] where \(\gamma^\mu=\left[\begin{matrix} 0 &\sigma^\mu\\ -\sigma^\mu & 0\end{matrix}\right]\) for \(\mu=1,2,3\), and \(\gamma^0=\left[\begin{matrix} I & 0\\ 0 &-I\end{matrix}\right]\). Here \(\sigma^\mu\) are the Pauli matrices, \(I\) is the identity matrix. An extensive literature exists concerning special cases of the M-D equations. For example, Georgiev proved existence of global solutions for a certain class of initial values. Using approximations to solutions of M-D equations Wakano proved in 1996 the existence of stationary, i.e. soliton-like standing waves.
The present authors consider exact equations (not approximations) and apply a variational principle of Esteban and Séré to the energy of the M-D system. The solution is the critical point of the energy functional. A similar argument works also for the Klein-Gordon-Dirac equations, again showing existence of soliton-like solutions. These results are important, since as is well-known soliton waves have many properties of both waves and particles.
Reviewer: V.Komkov (Roswell)


35Q75 PDEs in connection with relativity and gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
49S05 Variational principles of physics
Full Text: DOI


[1] A. Bachelot: Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon. Ann. Inst. H. Poincaré48 (1988) 387–422 · Zbl 0672.35071
[2] M. Balabane, T. Cazenave, L. Vazquez: Existence of standing waves for Dirac fields with singular nonlinearities. Comm. Math. Phys.133 (1990) 53–74 · Zbl 0721.35065
[3] M. Balabane, T. Cazenave, A. Douady, F. Merle: Existence of excited states for a nonlinear Dirac field. Comm. Math. Phys.119 (1988) 153–176 · Zbl 0696.35158
[4] M. Beals, M. Bezard: Solutions faibles sous des conditions d’énergie pour des équations de champ. Preprint · Zbl 0787.35075
[5] V. Benci, A. Capozzi, D. Fortunato: Periodic solutions of Hamiltonian systems with superquadratic potential. Ann. Mat. Pura App. (IV), Vol. CXLIII (1986) 1–46 · Zbl 0632.34036
[6] V. Benci, P.H. Rabinowitz: Critical point theorems for indefinite functional. Invent. Math.52 (1979) 336–352 · Zbl 0465.49006
[7] J.D. Bjorken-S.D. Drell: Relativistic quantum fields. New York, McGraw-Hill, 1965 · Zbl 0184.54201
[8] T. Cazenave: On the existence of stationary states for classical nonlinear Dirac fields. In Hyperbolic systems and Mathematical Physics. Textos e Notas 4, CMAF, Lisbonne (1989)
[9] T. Cazenave, L. Vazquez: Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys.105 (1986) 35–47 · Zbl 0596.35117
[10] J. Chadam: Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac system in one space dimension. J. Funct. Anal.13 (1973) 173–184 · Zbl 0264.35058
[11] J. Chadam, R. Glassey: On the Maxwell-Dirac equations with zero magnetic field and their solutions in two space dimension. J. Math. Anal. Apcl.53 (1976) 495–507 · Zbl 0324.35076
[12] Y. Choquet-Bruhat: Solutions globales des équations de Maxwell-Dirac-Klein-Gordon (masses nulles). C.R. Acad. Sci. Paris, Série I292 (1981) 153–158 · Zbl 0498.35053
[13] M.J. Esteban, E. Séré: Existence de solutions stationnaires pour l’équation de Dirac non-linéaire et le système de Dirac-Poisson. C.R. Acad. Sci., Série I,319 (1994) 1213–1218 · Zbl 0815.35103
[14] M.J. Esteban, E. Séré: Stationary states of the nonlinear Dirac equation: a variational approach. Com. Math. Phys.171 (1995) 323–350 · Zbl 0843.35114
[15] M. Flato, J. Simon, E. Taflin: On the global solutions of the Maxwell-Dirac equations. Comm. Math. Physics113 (1987) 21–49 · Zbl 0641.35064
[16] A. Garrett Lisi: A solitary wave solution of the Maxwell-Dirac equations. (Preprint)
[17] V. Georgiev: Small amplitude solutions of the Maxwell-Dirac equations. Indiana Univ. Math. J.40(3) (1991) 845–883 · Zbl 0754.35171
[18] W.T. Grandy, Jr.: Relativistic Quantum Mechanics of Leptons and Fields. Kluwer Acad. Publisher, Fund. Theories of Physics, Vol.41
[19] L. Gross: The Cauchy problem for the coupled Maxwell and Dirac equations. Comm. Pure Appl. Math.19 (1966) 1–5 · Zbl 0137.32401
[20] H. Hofer, Wysocki: First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann.288 (1990) 483–503 · Zbl 0702.34039
[21] L. Hormander: Remarks on the Klein-Gordon equation. Journées E.D.P., Saint Jean des Monts 1 (1987) 1–9
[22] S. Klainerman: Uniform decay estimates and the Lorentz invariance of the classical wave equations. Comm. Pure Appl. Math.38 (1985) 301–332 · Zbl 0635.35059
[23] S. Klainerman: Global existence of small amplitude solutions to the nonlinear Klein-Gordon equations in four space dimensions. Comm. Pure Appl. Math.38 (1985) 631–641 · Zbl 0597.35100
[24] S. Klainerman: The null condition and global existence to nonlinear wave equation Lect. in Appl. Math.23 (1986) 293–326
[25] S. Klainerman: Remarks on the global Sobolev inequalities in the Minkowski space \(\mathbb{R}\) n+1. Comm. Pure Appl. Math.40 (1986) 111–117 · Zbl 0686.46019
[26] P.-L. Lions: The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Anal, non-linéaire, Ann. IHP1 (1984) 109–145.
[27] P.-L. Lions: The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. II: Anal, non-linéaire, Ann. IHP1 (1984) 223–283
[28] F. Merle: Existence of stationary states for nonlinear Dirac equations. J. Differ. Eq.74(1) (1988) 50–68 · Zbl 0696.35154
[29] A.F. Rañada: Classical nonlinear Dirac field models of extended particles. In Quantum theory, groups, fields and particles (editor A.O. Barut). Reidel, Amsterdam, 1982
[30] E. Séré: Homoclinic orbits on compact hypersurfaces in \(\mathbb{R}\)2N , of restricted contact type. Com. Math. Phys. (to appear)
[31] M. Soler. Phys. Rev. Dl (1970) 2766–2769
[32] K. Tanaka: Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonics. J. Differ. Eq.94, 315–339 (1991) · Zbl 0787.34041
[33] M. Wakano: Intensely localized solutions of the classical Dirac-Maxwell field equations. Progr. Theor. Phys.35(6) (1966) 1117–1141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.