×

zbMATH — the first resource for mathematics

On the deformation quantization, on a Kähler manifold, associated with a Berzin quantization. (English. Russian original) Zbl 0869.53045
Funct. Anal. Appl. 30, No. 2, 142-144 (1996); translation from Funkts. Anal. Prilozh. 30, No. 2, 87-89 (1996).
In the paper under review, following Fedosov’s technique the author constructs a deformation quantization on an arbitrary Kähler manifold. As particular cases he refinds the well-known results of Berezin, Cahen, Gutt and Rawnsley.

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53D50 Geometric quantization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Rawnsley, M. Cahen, and S. Gutt, J. Geom. Phys.,7, 45–62 (1990). · Zbl 0719.53044 · doi:10.1016/0393-0440(90)90019-Y
[2] M. Cahen, S. Gutt, and J. Rawnsley, Trans. Am. Math. Soc.,337, 73–98 (1993). · Zbl 0788.53062 · doi:10.2307/2154310
[3] M. Cahen, S. Gutt, and J. Rawnsley, Lett. Math. Phys.,30, 291–305 (1994). · Zbl 0826.53052 · doi:10.1007/BF00751065
[4] M. Cahen, S. Gutt, and J. Rawnsley, to appear in Lett. Math. Phys.
[5] F. A. Berezin, Izv. Akad. Nauk SSSR, Ser. Mat.,38, 1116–1175 (1974).
[6] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovich, and D. Sternheimer, Ann. Phys.,111, 61–151 (1977).
[7] M. de Wilde and P. Lecomte, Lett. Math. Phys.,7, 487–496 (1983). · Zbl 0526.58023 · doi:10.1007/BF00402248
[8] H. Omori, Y. Maeda, and A. Yoshioka, Adv. Math.,85, 224–255 (1991). · Zbl 0734.58011 · doi:10.1016/0001-8708(91)90057-E
[9] B. V. Fedosov, J. Diff. Geom.,40, 213–238 (1994).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.