Hughes, Thomas J. R.; Stewart, James R. A space-time formulation for multiscale phenomena. (English) Zbl 0869.65061 J. Comput. Appl. Math. 74, No. 1-2, 217-229 (1996). Authors’ summary: We develop subgrid scale models for a class of nonsymmetric, linear evolution operators by applying the variational multiscale method in space-time. The results generalize those of T. J. R. Hughes [Comput. Methods Appl. Mech. Eng. 127, No. 1-4, 387-401 (1995; Zbl 0866.76044)] which were confined to the steady case. The subgrid scale models are shown to be a paradigm for “bubble” function finite element methods and provide a theoretical and practial framework for the development of so-called stabilized methods. Reviewer: H.Marcinkowska (Wrocław) Cited in 64 Documents MSC: 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 35G10 Initial value problems for linear higher-order PDEs 35K25 Higher-order parabolic equations Keywords:bubble function finite element methods; linear evolution operators; multiscale method; stabilized methods Citations:Zbl 0866.76044 PDF BibTeX XML Cite \textit{T. J. R. Hughes} and \textit{J. R. Stewart}, J. Comput. Appl. Math. 74, No. 1--2, 217--229 (1996; Zbl 0869.65061) Full Text: DOI OpenURL References: [1] Aliabadi, S. K.; Tezduyar, T. E., Space-time finite element computation of compressible flows involving moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg., 107, 209-223 (1993) · Zbl 0798.76037 [2] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and the Galerkin-least-squares method, Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033 [3] Barbosa, H. J.C.; Hughes, T. J.R., Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62, 1-15 (1992) · Zbl 0765.65102 [4] Brezzi, F.; Bristeau, M. O.; Franca, L. P.; Mallet, M.; Roge, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Engrg., 96, 117-129 (1992) · Zbl 0756.76044 [5] Franca, L. P.; Farhat, C., On the limitations of bubble functions, Comput. Methods Appl. Mech. Engrg., 117, 225-230 (1994) · Zbl 0847.76033 [6] Franca, L. P.; Farhat, C., Anti-stabilizing effects of bubble functions, (Proc. 3rd World Congress on Computational Mechanics. Proc. 3rd World Congress on Computational Mechanics, Extended Abstracts, Vol. 2 (August 1994)), 1452-1453, Chiba, Japan [7] Franca, L. P.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 123, 299-308 (1995) · Zbl 1067.76567 [8] Franca, L. P.; Frey, S. L., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99, 209-233 (1992) · Zbl 0765.76048 [9] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253-276 (1992) · Zbl 0759.76040 [10] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 89-129 (1988) · Zbl 0651.65078 [11] Franca, L. P.; Hughes, T. J.R., Convergence analysis of Galerkin/least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105, 285-298 (1993) · Zbl 0771.76037 [12] Franca, L. P.; Hughes, T. J.R.; Loula, A. F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numer. Math., 53, 123-141 (1988) · Zbl 0656.73036 [13] Franca, L. P.; Hughes, T. J.R.; Stenberg, R., Stabilized finite element methods for the Stokes problem, (Nicolaides, R. A.; Gunzberger, M. D., Incompressible Fluid Dynamics — Trends and Advances (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 87-107 · Zbl 1189.76339 [14] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044 [15] Hughes, T. J.R.; Brezzi, F., On drilling degrees-of-freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015 [16] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067 [17] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes poblem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077 [18] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100 [19] Hughes, T. J.R.; Hauke, G.; Jansen, K., Stabilized finite element methods in fluids: inspirations, origins, status and recent development, (Hughes, T. J.R.; Oñate, E.; Zienkiewicz, O. C., Recent Developments in Finite Element Analysis. A Book Dedicated to Robert L. Taylor (1994), International Center for Numerical Methods in Engineering: International Center for Numerical Methods in Engineering Barcelona, Spain), 272-292 · Zbl 1122.76346 [20] Hughes, T. J.R.; Hulbert, G. M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Engrg., 66, 339-363 (1988) · Zbl 0616.73063 [21] Hulbert, G. M.; Hughes, T. J.R., Space-time finite element for second-order hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 84, 327-348 (1990) · Zbl 0754.73085 [22] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (Finite Elements in Fluids VI (1986), Wiley: Wiley New York) [23] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge [24] Johnson, C., Finite element methods for flow problems, AGARD Report 787, Unstructured Grid Methods for Advection Dominated Flows (1992) [25] Johnson, C.; Hansbo, P., Adaptive finite element methods in computational mechanics, (Preprint No. 1992-04/ISSN 0347-2809 (1992), Department of Mathematics, Chalmers University of Technology, The University of Göteborg: Department of Mathematics, Chalmers University of Technology, The University of Göteborg Göteborg, Sweden) · Zbl 0778.73071 [26] Johnson, C.; Nävert, U.; Pitkaranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087 [27] Mittal, S.; Tezduyar, T. E., Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. Methods Appl. Mech. Engrg., 112, 253-282 (1994) · Zbl 0846.76048 [28] Stakgold, I., Green’s Functions and Boundary Value Problems (1979), Wiley: Wiley New York · Zbl 0421.34027 [29] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces — the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests, Comput. Methods Appl. Mech. Engrg., 94, 339-351 (1992) · Zbl 0745.76044 [30] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces — the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and lfows with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94, 353-371 (1992) · Zbl 0745.76045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.