×

zbMATH — the first resource for mathematics

Approximation of fixed points of a strictly pseudocontractive mapping. (English) Zbl 0870.47039
Summary: A fixed point of the strictly pseudocontractive mapping is obtained as the limit of an iteratively constructed sequence with error estimation in general Banach spaces.

MSC:
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Xinlong Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113 (1991), no. 3, 727 – 731. · Zbl 0734.47042
[2] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283 – 288. · Zbl 0646.47037
[3] C. E. Chidume, Approximation of fixed points of strongly pseudocontractive mappings, Proc. Amer. Math. Soc. 120 (1994), no. 2, 545 – 551. · Zbl 0802.47058
[4] C. E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mappings in \?_\? spaces, J. Math. Anal. Appl. 151 (1990), no. 2, 453 – 461. · Zbl 0724.65058 · doi:10.1016/0022-247X(90)90160-H · doi.org
[5] Kok-Keong Tan and Hong Kun Xu, Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), no. 1, 9 – 21. · Zbl 0834.47048 · doi:10.1006/jmaa.1993.1287 · doi.org
[6] J. Bogin, On strict pseudo-contractions and a fixed point theorem, Technion preprint series No. MT-219, Haifa, Israel, 1974.
[7] J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Funct. Anal. 27 (1978), no. 1, 38 – 50. · Zbl 0422.47033 · doi:10.1016/0022-1236(78)90018-6 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.