×

zbMATH — the first resource for mathematics

Quaternions and special relativity. (English) Zbl 0870.53061
Recently, quaternions have been extensively used to rewrite or re-express many equations of physics. To reformulate special relativity, complexified quaternions have been used.
In this paper, the author defines a quaternionic algebra on the reals and uses it to demonstrate a “natural” reformulation of special relativity. Although it is difficult to discuss the question of whether one number system (quaternions) is more useful than the other (complexified quaternions), real linear quaternions have found frequent application in a noncommutative number system (quaternionic field) environment.

MSC:
53Z05 Applications of differential geometry to physics
83A05 Special relativity
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[2] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[3] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[4] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[5] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[6] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[7] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[8] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[9] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[10] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[11] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[12] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[13] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[14] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[15] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[16] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[17] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[18] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[19] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[20] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[21] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[22] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[23] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[24] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[25] DOI: 10.1063/1.529528 · Zbl 0772.15016 · doi:10.1063/1.529528
[26] DOI: 10.1143/ptp/92.5.917 · doi:10.1143/ptp/92.5.917
[27] DOI: 10.1007/BF02741288 · doi:10.1007/BF02741288
[28] DOI: 10.1016/0003-4916(84)90068-X · Zbl 0558.46039 · doi:10.1016/0003-4916(84)90068-X
[29] DOI: 10.1073/pnas.44.3.280 · Zbl 0093.37303 · doi:10.1073/pnas.44.3.280
[30] DOI: 10.1073/pnas.44.3.280 · Zbl 0093.37303 · doi:10.1073/pnas.44.3.280
[31] Frobenius G., J. Reine Angew. Nath. 84 pp 59– (1878)
[32] DOI: 10.4006/1.3029063 · doi:10.4006/1.3029063
[33] DOI: 10.1119/1.1987651 · doi:10.1119/1.1987651
[34] DOI: 10.1119/1.1987651 · doi:10.1119/1.1987651
[35] DOI: 10.1119/1.1987651 · doi:10.1119/1.1987651
[36] DOI: 10.1088/0143-0807/10/3/005 · doi:10.1088/0143-0807/10/3/005
[37] DOI: 10.1088/0143-0807/10/3/005 · doi:10.1088/0143-0807/10/3/005
[38] DOI: 10.1088/0143-0807/10/3/005 · doi:10.1088/0143-0807/10/3/005
[39] DOI: 10.1088/0305-4470/24/14/013 · Zbl 0731.22016 · doi:10.1088/0305-4470/24/14/013
[40] DOI: 10.1142/S0217732389001106 · doi:10.1142/S0217732389001106
[41] De Leo S., Int. J. Mod. Phys. A 11 (1996)
[42] DOI: 10.1098/rspa.1931.0130 · Zbl 0002.30502 · doi:10.1098/rspa.1931.0130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.