De Leo, Stefano Quaternions and special relativity. (English) Zbl 0870.53061 J. Math. Phys. 37, No. 6, 2955-2968 (1996). Recently, quaternions have been extensively used to rewrite or re-express many equations of physics. To reformulate special relativity, complexified quaternions have been used.In this paper, the author defines a quaternionic algebra on the reals and uses it to demonstrate a “natural” reformulation of special relativity. Although it is difficult to discuss the question of whether one number system (quaternions) is more useful than the other (complexified quaternions), real linear quaternions have found frequent application in a noncommutative number system (quaternionic field) environment. Reviewer: A.Bucki (Oklahoma City) Cited in 16 Documents MSC: 53Z05 Applications of differential geometry to physics 83A05 Special relativity Keywords:complexified quaternions; real linear quaternions PDF BibTeX XML Cite \textit{S. De Leo}, J. Math. Phys. 37, No. 6, 2955--2968 (1996; Zbl 0870.53061) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1063/1.529528 · Zbl 0772.15016 [2] DOI: 10.1063/1.529528 · Zbl 0772.15016 [3] DOI: 10.1063/1.529528 · Zbl 0772.15016 [4] DOI: 10.1063/1.529528 · Zbl 0772.15016 [5] DOI: 10.1063/1.529528 · Zbl 0772.15016 [6] DOI: 10.1063/1.529528 · Zbl 0772.15016 [7] DOI: 10.1063/1.529528 · Zbl 0772.15016 [8] DOI: 10.1063/1.529528 · Zbl 0772.15016 [9] DOI: 10.1063/1.529528 · Zbl 0772.15016 [10] DOI: 10.1063/1.529528 · Zbl 0772.15016 [11] DOI: 10.1063/1.529528 · Zbl 0772.15016 [12] DOI: 10.1063/1.529528 · Zbl 0772.15016 [13] DOI: 10.1063/1.529528 · Zbl 0772.15016 [14] DOI: 10.1063/1.529528 · Zbl 0772.15016 [15] DOI: 10.1063/1.529528 · Zbl 0772.15016 [16] DOI: 10.1063/1.529528 · Zbl 0772.15016 [17] DOI: 10.1063/1.529528 · Zbl 0772.15016 [18] DOI: 10.1063/1.529528 · Zbl 0772.15016 [19] DOI: 10.1063/1.529528 · Zbl 0772.15016 [20] DOI: 10.1063/1.529528 · Zbl 0772.15016 [21] DOI: 10.1063/1.529528 · Zbl 0772.15016 [22] DOI: 10.1063/1.529528 · Zbl 0772.15016 [23] DOI: 10.1063/1.529528 · Zbl 0772.15016 [24] DOI: 10.1063/1.529528 · Zbl 0772.15016 [25] DOI: 10.1063/1.529528 · Zbl 0772.15016 [26] DOI: 10.1143/ptp/92.5.917 [27] DOI: 10.1007/BF02741288 [28] DOI: 10.1016/0003-4916(84)90068-X · Zbl 0558.46039 [29] DOI: 10.1073/pnas.44.3.280 · Zbl 0093.37303 [30] DOI: 10.1073/pnas.44.3.280 · Zbl 0093.37303 [31] Frobenius G., J. Reine Angew. Nath. 84 pp 59– (1878) [32] DOI: 10.4006/1.3029063 [33] DOI: 10.1119/1.1987651 [34] DOI: 10.1119/1.1987651 [35] DOI: 10.1119/1.1987651 [36] DOI: 10.1088/0143-0807/10/3/005 [37] DOI: 10.1088/0143-0807/10/3/005 [38] DOI: 10.1088/0143-0807/10/3/005 [39] DOI: 10.1088/0305-4470/24/14/013 · Zbl 0731.22016 [40] DOI: 10.1142/S0217732389001106 [41] De Leo S., Int. J. Mod. Phys. A 11 (1996) [42] DOI: 10.1098/rspa.1931.0130 · Zbl 0002.30502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.