×

zbMATH — the first resource for mathematics

Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. (English) Zbl 0870.90092
Summary: Using the theory of exact penalization for mathematical programs with subanalytic constraints, the theory of error bounds for quadratic inequality systems, and the theory of parametric normal equations, we derive various exact penalty functions for mathematical programs subject to equilibrium constraints, and we also characterize stationary points of these programs.

MSC:
90C30 Nonlinear programming
49M30 Other numerical methods in calculus of variations (MSC2010)
49J52 Nonsmooth analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Aiyoshi and K. Shimizu, ”A solution method for the static constrained Stackelberg problem via penalty method”,IEEE Transactions on Automatic Control AC-29 (1984) 1111–1114. · Zbl 0553.90104 · doi:10.1109/TAC.1984.1103455
[2] G. Anandalingam and T. Friesz, eds. ”Hierarchical optimization”,Annals of Operations Research 34 (1992). · Zbl 0751.90067
[3] G. Anandalingam and D.J. White, ”A solution method for the linear static Stackelberg problem using penalty function”,IEEE Transactions on Automatic Control 35 (1990) 1170–1173. · Zbl 0721.90098 · doi:10.1109/9.58565
[4] J.P. Aubin and H. Frankowska,Set-Valued Analysis (Birkäuser, Boston, 1990).
[5] J.F. Bard, ”An algorithm for solving the general bilevel programming problem”,Mathematics of Operations Research 8 (1983) 260–272. · Zbl 0516.90061 · doi:10.1287/moor.8.2.260
[6] J.F. Bard, ”Optimality conditions for the bilevel programming problem”,Naval Research Logistics Quarterly 31 (1984) 13–26. · Zbl 0537.90087 · doi:10.1002/nav.3800310104
[7] J.F. Bard, ”Convex two-level optimization”Mathematical Programming 40 (1988) 15–27. · Zbl 0655.90060 · doi:10.1007/BF01580720
[8] Z. Bi, P. Calamai, and A. Conn, ”An exact penalty function approach for the linear bilevel programming problem”, Working paper. Department of Systems Design and Engineering, University of Waterloo, Waterloo, (1991).
[9] E. Bierstone and P.D. Milman, ”Semianalytic and subanalytic sets”,Institut des Hautes Etudes Scientifiques, Publications Mathématiques 67 (1988) 5–42. · Zbl 0674.32002 · doi:10.1007/BF02699126
[10] J.V. Burke, ”An exact penalization viewpoint of constrained optimization”,SIAM Journal on Control and Optimization 29 (1991) 968–998. · Zbl 0737.90060 · doi:10.1137/0329054
[11] R.W. Chaney, ”PiecewiseC k functions in nonsmooth analysis”,Nonlinear Analysis, Theory, Methods & Applications 15 (1990) 649–660. · Zbl 0714.49017 · doi:10.1016/0362-546X(90)90005-2
[12] F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983). · Zbl 0582.49001
[13] R.W. Cottle, J.S. Pang, and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, 1992). · Zbl 0757.90078
[14] J.P. Dedieu, ”Penalty functions in subanalytic optimization”,Optimization 26 (1992) 27–32. · Zbl 0817.90103 · doi:10.1080/02331939208843840
[15] S. Dempe, ”A necessary and a sufficient optimality condition for bilevel programming problems”,Optimization 25 (1992) 341–354. · Zbl 0817.90104 · doi:10.1080/02331939208843831
[16] B.C. Eaves, ”On the basic theorem of complementarity”,Mathematical Programming 1 (1971) 68–75. · Zbl 0227.90044 · doi:10.1007/BF01584073
[17] A.V. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1993). · Zbl 0543.90075
[18] J. Gauvin, ”A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming”,Mathematical Programming 12 (1977) 136–138. · Zbl 0354.90075 · doi:10.1007/BF01593777
[19] M.S. Gowda and J.S. Pang, ”Stability analysis of variational inequalities and nonlinear complementarity problems”,Mathematics of Operations Research 19 (1994) 831–879. · Zbl 0821.90114 · doi:10.1287/moor.19.4.831
[20] M. Guignard, ”Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach Space”,SIAM Journal on Control 7 (1969) 232–241. · Zbl 0182.53101 · doi:10.1137/0307016
[21] P.T. Harker and J.S. Pang, ”On the existence of optimal solutions to mathematical program with equilibrium constraints”,Operations Research Letters 7 (1988) 61–64. · Zbl 0648.90065 · doi:10.1016/0167-6377(88)90066-1
[22] H. Hironaka, ”Introduction to real-analytic sets and real-analytic maps”, Istituto Matematico ”L. Tonelli” dell’ Università de Pisa, Italy (1973). · Zbl 0297.32008
[23] A.J. Hoffman, ”On approximate solutions of systems of linear inequalities”,Journal of Research of the National Bureau of Standards 49 (1952) 263–265.
[24] R. Janin, ”Directional derivative of the marginal function in nonlinear programming”,Mathematical Programming Study 21 (1984) 110–126. · Zbl 0549.90082
[25] M. Kojima, ”Strongly stable stationary solutions in nonlinear programs”, in: S.M. Robinson, ed.,Analysis and Computation of Fixed Points, (Academic Press, New York 1980) pp 93–138.
[26] J. Kyparisis, ”On uniqueness of Kuhn-Tucker multipliers in nonlinear programming”,Mathematical Programming 32 (1985) 242–246. · Zbl 0566.90085 · doi:10.1007/BF01586095
[27] N.G. Lloyd,Degree Theory (Cambridge University Press Cambridge, 1978).
[28] M.S. Lojasiewicz, ”Sur le problème de la division”,Studia Mathematica 18 (1959) 87–136. · Zbl 0115.10203
[29] M.S. Lojasiewicz, ”Ensembles semi-analytiques”, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (1964).
[30] Z.Q. Luo and J.S. Pang, ”Error bounds for analytic systems and their applications”,Mathematical Programming 67 (1994) 1–28. · Zbl 0813.90116 · doi:10.1007/BF01582210
[31] O.L. Mangasarian,Nonlinear Programming (McGraw-Hill, New York, 1969).
[32] O.L. Mangasarian, ”Sufficiency of exact penalty minimization”,SIAM Journal on Control and Optimization 23 (1985) 30–37. · Zbl 0559.90072 · doi:10.1137/0323003
[33] O.L. Mangasarian ”A simple characterization of solution sets of convex program”,Operations Research Letters 7 (1988) 21–26. · Zbl 0653.90055 · doi:10.1016/0167-6377(88)90047-8
[34] O.L. Mangasarian and S. Fromovitz, ”The Fritz John optimality necessary conditions in the presence of equality and inequality constraints”,Journal of Mathematical Analysis and Applications 17 (1967) 37–47. · Zbl 0149.16701 · doi:10.1016/0022-247X(67)90163-1
[35] P. Marcotte, ”Network design problem with congestion effects: A case of bilevel programming”,Mathematical Programming, 34 (1986) 142–162. · Zbl 0604.90053 · doi:10.1007/BF01580580
[36] P. Marcotte and D.L. Zhu, ”Exact and inexact penalty methods for the generalized bilevel programming problems”, Publication #920, Centre de Recherche sur les Transports, Université de Montréal, Montréal, Québec, Canada (1993). · Zbl 0855.90120
[37] J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970). · Zbl 0241.65046
[38] J.V. Outrata, ”On optimization problems with variational inequality constraints”,SIAM Journal of Optimization 4 (1994) 340–357. · Zbl 0826.90114 · doi:10.1137/0804019
[39] J.S. Pang, ”Newton’s method for B-differentiable equations”Mathematics of Operations Research 15 (1990) 311–341. · Zbl 0716.90090 · doi:10.1287/moor.15.2.311
[40] J.S. Pang, ”Complementarity problems”, in: R. Horst and P. Pardalos, eds.,Handbook on Global Optimization (Kluwer Academic Publishers, Dordrecht/Boston, 1994), pp. 271–338. · Zbl 0833.90114
[41] J.S. Pang, ”A degree-theoretic approach to parametric nonsmooth equations with multivalued perturbed solution sets”,Mathematical Programming, Series B 62 (1993) 359–384. · Zbl 0802.47057 · doi:10.1007/BF01585174
[42] J.S. Pang and D. Ralph, ”Piecewise smoothness, local invertibility, and parametric analysis of normal maps”,Mathematics of Operations Research 21 (1996) 401–426. · Zbl 0857.90122 · doi:10.1287/moor.21.2.401
[43] D. Ralph and S. Dempe, ”Directional derivatives of the solution of a parametric nonlinear program”, Manuscript, Department of Mathematics, University of Melbourne, Australia (1994). · Zbl 0844.90089
[44] S.M. Robinson, ”Strongly regular generalized equations”,Mathematics of Operations Research 5 (1980) 43–62. · Zbl 0437.90094 · doi:10.1287/moor.5.1.43
[45] S.M. Robinson, ”Some continuity properties of polyhedral multifunctions”,Mathematical Programming Study 14 (1981) 206–214. · Zbl 0449.90090
[46] S.M. Robinson, ”Generalized equations and their applications, part II: applications to nonlinear programming”,Mathematical Programming Study 19 (1982) 200–221. · Zbl 0495.90077
[47] S.M. Robinson, ”Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity”,Mathematical Programming Study 30 (1987) 45–66. Corrigenda,Mathematical Programming 49 (1987) 143. · Zbl 0629.90079
[48] S.M. Robinson, ”An implicit-function theorem for a class of nonsmooth functions”,Mathematics of Operations Research 16 (1991) 292–309. · Zbl 0746.46039 · doi:10.1287/moor.16.2.292
[49] S.M. Robinson, ”Normal maps induced by linear transformations”,Mathematics of Operations Research 17 (1992) 691–714. · Zbl 0777.90063 · doi:10.1287/moor.17.3.691
[50] H. Van Stackelberg,The Theory of Market Economy (Oxford University Press, 1952).
[51] J. Warga, ”A necessary and sufficient condition for a constrained minimum”,SIAM Journal on Optimization 2 (1992) 665–667. · Zbl 0770.90068 · doi:10.1137/0802033
[52] J.J. Ye and D.L. Zhu, ”Optimality conditions for bilevel programming problems”, DMS-6180IR, Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada (1993). · Zbl 0820.65032
[53] J.J. Ye, D.L. Zhu, and Q. Zhu, ”Generalized bilevel programming problem”, manuscript. Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada (1993).
[54] R. Zhang, ”Problems of hierarchical optimization: Nonsmoothness and analysis of solutions”, Ph.D. dissertation, Department of Applied Mathematics, University of Washington, Seattle (1990).
[55] R. Zhang, ”Problems of hierarchical optimization in finite dimensions”,SIAM Journal on Optimization 4 (1994) 521–536. · Zbl 0819.90107 · doi:10.1137/0804029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.