zbMATH — the first resource for mathematics

Parametrizations of Kojima’s system and relations to penalty and barrier functions. (English) Zbl 0871.90086
Summary: We investigate two homotopies that perturb Kojima’s system for describing critical points of a nonlinear optimization problem in finite dimension. Each of them characterizes stationary points of a usual penalty and a new “barrier” function. The latter is a continuous deformation of the objective, symmetric to the penalty from a formal point of view. Stationary points of these functions appear as perturbed critical points and vice versa. This permits new interpretations of the related solution methods and allows estimates of the solutions by using implicit function theorems for Lipschitzian equations.

90C30 Nonlinear programming
49M30 Other numerical methods in calculus of variations (MSC2010)
Full Text: DOI
[1] F.H. Clarke, On the inverse function theorem,Pacific Journal on Mathematics 64 (1976) 97–102. · Zbl 0331.26013 · doi:10.2140/pjm.1976.64.97
[2] F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983). · Zbl 0582.49001
[3] J. Guddat, F. Guerra Vasquez and H.Th. Jongen,Parametric Optimization: Singularities, Pathfollowing and Jumps (Wiley, New York, 1990). · Zbl 0718.90056
[4] H.Th. Jongen, D. Klatte and K. Tammer, Implicit functions and sensitivity of stationary points,Mathematical Programming 49 (1990) 123–138. · Zbl 0715.65034 · doi:10.1007/BF01588782
[5] M. Kojima, Strongly stable stationary solutions in nonlinear programs, in: S.M. Robinson, ed.,Analysis and Computation of Fixed Points (Academic, New York, 1980) 93–138.
[6] B. Kummer, Lipschitzian inverse functions, directional derivatives and application inC 1.1-optimization,Journal of Optimization Theory and Applications 70 (1991) 559–580. · Zbl 0795.49012 · doi:10.1007/BF00941302
[7] B. Kummer, An implicit function theorem forC 0.1-equations and parametricC 1.1-optimization,Journal of Mathematical Analysis and Applications 158 (1991) 35–46. · Zbl 0742.49006 · doi:10.1016/0022-247X(91)90264-Z
[8] B. Kummer, Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis, in: W. Oettli and D. Pallaschke, eds.,Advances in Optimization, Proceedings 6th French-German Colloquium on Optimization, Lambrecht, 1991, Lecture Notes in Economics and Mathematical Systems, Vol. 382 (Springer, Berlin, 1992) 171–194. · Zbl 0768.49012
[9] B. Kummer, On solvability and regularity of a parametrized version of optimality conditions,Zeitschrift für Operations Research – Mathematical Methods of OR 41 (1995) 215–230. · Zbl 0834.90120 · doi:10.1007/BF01432656
[10] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations.Mathematics of Operations Research 18 (1993) 227–244. · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[11] S.M. Robinson, Strongly regular generalized equations,Mathematics of Operations Research 5 (1980) 43–62. · Zbl 0437.90094 · doi:10.1287/moor.5.1.43
[12] H. Schwetlick,Numerische Lösung nichtlinearer Gleichungen (Deutscher Verlag der Wissenschaften, Berlin, 1979).
[13] L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions.Ann. Mat. Pura. Appl. 125 (1980) 157–192. · Zbl 0486.46037 · doi:10.1007/BF01789411
[14] L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions,Nonlinear Analysis Theory, Methods & Applications 6 (1982) 1037–1053. · Zbl 0492.46036 · doi:10.1016/0362-546X(82)90074-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.