On the periodic Lotka-Volterra competition model. (English) Zbl 0874.34039

Summary: We analyze the existence, stability and multiplicity of \(T\)-periodic coexistence states for the classical nonautonomous periodic Lotka-Volterra competing species model. This is done by treating the average values of the birth rates of species as parameters, and studying the global structure of the set of coexistence states as these parameters vary. As a result of this analysis, we can explain the interesting differences between the results for the periodic case and the associated autonomous model.


34C25 Periodic solutions to ordinary differential equations
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI


[1] Ahmad, S., On the nonautonomous volterra – lotka competition equations, Proc. Amer. Math. Soc., 117, 199-204, (1993) · Zbl 0848.34033
[2] Ahmad, S.; Lazer, A. C., Asymptotic behaviour of solutions of periodic competition diffusion systems, Nonlinear Anal., 13, 263-284, (1989) · Zbl 0686.35060
[3] Alvarez, C.; Lazer, A. C., An application of topological degree to the periodic competing species problem, J. Austral. Math. Soc. Ser. B, 28, 202-219, (1986) · Zbl 0625.92018
[4] Babin, A. V.; Vishik, M. I., Attractors of Evolution Equations, Studies in Mathematics and Its Applications, 25, (1992), North-Holland Amsterdam · Zbl 0778.58002
[5] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340, (1971) · Zbl 0219.46015
[6] Crandall, M. G.; Rabinowitz, P. H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52, 161-180, (1973) · Zbl 0275.47044
[7] Cushing, J. M., Two species competition in a periodic environment, J. Math. Biol., 10, 385-390, (1980) · Zbl 0455.92012
[8] Eilbeck, J. C.; Furter, J. E.; López-Gómez, J., Coexistence in the competition model with diffusion, J. Differential Equations, 107, 96-139, (1994) · Zbl 0833.92010
[9] Esquinas, J.; López-Gómez, J., Multiparameter bifurcation for some particular reaction diffusion systems, Proc. Roy. Soc. Edinburgh Sect. A, 112, 135-143, (1989) · Zbl 0727.35010
[10] Grenfell, B. T.; Bolker, B. M.; Kleczkowski, A., Seasonality and extinction in chaotic metapopulations, Proc. Roy. Soc. London B, 259, 97-103, (1995)
[11] Hale, J. K., Ordinary Differential Equations, (1969), Wiley New York · Zbl 0186.40901
[12] Hale, J. K.; Somolinos, A., Competition for fluctuating nutrient, J. Math. Biol., 18, 255-280, (1983) · Zbl 0525.92024
[13] Hess, P.; Lazer, A. C., On an abstract competition model and applications, Nonlinear Anal., 16, 917-940, (1991) · Zbl 0743.35033
[14] S. B. Hsu, H. Smith, P. Waltman, Competitive exclusion and coexistence for competitive coexistence in ordered Banach spaces, Trans. Amer. Math. Soc. · Zbl 0860.47033
[15] Krasnoselskii, M. A., Translation along Trajectories of Differential Equations, Mathematical Monographs, (1968), Amer. Math. Soc Providence
[16] López-Gómez, J., Positive periodic solutions of lotka – volterra reaction diffusion systems, Differential Integral Equations, 5, 55-72, (1992) · Zbl 0754.35065
[17] López-Gómez, J., Structure of positive solutions in the periodic lotka – volterra competition model when a parameter varies, Nonlinear Anal., 27, 739-768, (1995) · Zbl 0860.34024
[18] López-Gómez, J.; Ortega, R.; Tineo, A. R., The periodic predator – prey lotka – volterra model, Adv. in Differential Equations, 403-423, (1996) · Zbl 0849.34026
[19] López-Gómez, J.; Sabina, J. C., Coexistence states and global attractivity for some convective diffusive competing species models, Trans. Amer. Math. Soc., 347, 3797-3833, (1995) · Zbl 0848.35012
[20] de Mottoni, P.; Schiaffino, A., Competition systems with periodic coefficients: a geometric approach, J. Math. Biol., 11, 319-335, (1981) · Zbl 0474.92015
[21] Smith, H., Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64, 165-194, (1986) · Zbl 0596.34013
[22] Smith, H., Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17, 1289-1318, (1986) · Zbl 0609.34048
[23] Tineo, A. R., Existence of global coexistence state for periodic competition diffusion systems, Nonlinear Anal., 19, 335-344, (1992) · Zbl 0779.35058
[24] Tineo, A. R., An iterative scheme for theN, J. Differential Equations, 1-15, (1995) · Zbl 0823.34048
[25] Zanolin, F., Permanence and positive periodic solutions for Kolmogorov competing species models, Results in Math., 21, 224-250, (1992) · Zbl 0765.92022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.