×

zbMATH — the first resource for mathematics

Point estimation under asymmetric loss functions for left-truncated exponential samples. (English) Zbl 0875.62101
Summary: Bayes estimates of the parameters and functions thereof in the left-truncated exponential distribution are derived. Asymmetric loss functions are used to reflect that, in most situations of interest, overestimation of a parameter does not produce the same economic consequence than underestimation. Both the non-informative prior and an informative prior on the reliability level at a prefixed time value are considered, and the statistical performances of the Bayes estimates are compared to those of the maximum likelihood ones through the risk function.

MSC:
62F10 Point estimation
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abu-Salih M.S., J. Infor. Optim. Sciences 9 pp 405– (1988)
[2] Bain L.J., Statistical Analysis of Reliability and Life Testing Models (1978) · Zbl 0419.62076
[3] Basu A.P., J. Statist. Plann. Inference 29 pp 21– (1991) · Zbl 0850.62719
[4] Berger J.O., Statistical Decision Theory: Foundations, Concepts, and Methods (1980) · Zbl 0444.62009
[5] Calabria R., Microelectron. Reliab. 34 pp 789– (1994)
[6] Calabria R., Commun. Statist. - Theory Meth. 23 pp 1811– (1994) · Zbl 0825.62167
[7] Calabria R., Microelectron. Reliab. 34 pp 1897– (1994)
[8] Canfield R.V., IEEE Trans. Reliab. 19 pp 13– (1970)
[9] Davis D.J., J. Am. Statist. Assoc. 47 pp 113– (1952)
[10] Dey D.K., J. Statist. Plànn. Inference pp 347– (1987)
[11] Dey D.K., Microelectron. Reliab. 32 pp 207– (1992)
[12] Erto P., Quality and Reliability Engineering International 1 pp 161– (1985) · Zbl 0576.62092
[13] Evans I.G., Technometrics 22 pp 201– (1980)
[14] Ferguson T. S., Mathematical Statistics: A Decision Theoretic Approach (1967)
[15] Feynman, R.P. 1987.Mr. Feynman goes to Washington, 6–22. Pasadena, CA: Engineering and Science, California Institute of Technology.
[16] Grubbs F.E., Technometrics 13 pp 873– (1971)
[17] Guttman I., Ann. Math. Statist. 35 pp 825– (1964) · Zbl 0129.32902
[18] Kalbfleisch J.D., The Statistical Analysis of Failure (1980) · Zbl 0504.62096
[19] Lawless J.F., Statistical Models & Methods for Lifetime Data (1982) · Zbl 0541.62081
[20] Mann N.R., Methods for Statistical Analysis of Reliability and Life Data (1974) · Zbl 0339.62070
[21] Pandey B.N., Commun. Statist. - Theory Meth. 21 pp 3369– (1992) · Zbl 0777.62033
[22] parsian A., Commun. Statist. - Theory Meth. 22 pp 2877– (1993) · Zbl 0785.62007
[23] Rukhin A.L., Statist. Decisions 7 pp 277– (1989)
[24] Schäbe H., IEEE Trans. Reliab. 40 pp 63– (1991) · Zbl 0729.62619
[25] Sinha S.K., Reliability and Life Testing (1986)
[26] Sinha S.K., Commun. Statist. - Theory Meth. 5 pp 471– (1976)
[27] Singh U., Microelectron. Reliab. 34 (1) pp 141– (1994)
[28] Varde S.D., J. Am. Statist. Assoc. 64 (1) pp 621– (1969)
[29] Varian, H.R. 1975.A bayesian approach to real estate assessment, Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, Edited by: Fienberg and Zellner. 195–208. Amsterdam: North Holland.
[30] Zellner A., J. Am. Statist. Assoc. 81 (1) pp 446– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.