×

zbMATH — the first resource for mathematics

Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. (English) Zbl 0876.93083
The authors of this paper investigate robust adaptive control of a class of single-input, single-output (SISO) nonlinear systems transformable to a semi-strict feedback form. These systems can possess both parameter uncertainties and unknown linear functions representing modeling errors and external disturbances. The authors develop a systematic way to combine backstepping adaptive control with deterministic robust control provided that there is prior knowledge of the bounds of the parameter uncertainties and known bounding functions of the unknown linear functions. The authors’ method preserves the advantages of each part of the hybrid approach: asymptotic stability of adaptive control in the presence of parametric uncertainties and guaranteed transient performance with the prescribed precision of deterministic robust control for both parametric uncertainties and unknown nonlinear functions. Simulation results for a simple example illustrate the authors’ results.

MSC:
93D21 Adaptive or robust stabilization
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barmish, B.R.; Leitmann, G., On ultimate boundedness control of uncertain systems in the absence of matching assumptions, IEEE trans. autom. control, AC-27, 153-158, (1982) · Zbl 0469.93043
[2] Chen, Y.H., Design of robust controllers for uncertain dynamical systems, IEEE trans. autom. control, AC-33, 487-491, (1988) · Zbl 0638.93053
[3] Corless, M.J.; Leimann, G., Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE trans. autom. control, AC-26, 1139-1144, (1981) · Zbl 0473.93056
[4] Datta, A., Computed torque adaptive control of rigid robots with improved transient performance, (), 1418-1422
[5] Goodwin, G.C.; Mayne, D.Q., A parameter estimation perspective of continuous time model reference adaptive control, Automatica, 23, 57-70, (1989) · Zbl 0617.93033
[6] Isidori, A., Nonlinear control systems: an introduction, (1989), Springer-Verlag Berlin · Zbl 0569.93034
[7] Kanellakopoulos, I., Passive adaptive control of nonlinear systems, Int. J. adaptive control sig. process., 7, 339-352, (1993) · Zbl 0796.93067
[8] Kanellakopoulos, I.; Kanellakopoulos, I., Adaptive control of nonlinear systems: a tutorial, (), 89-133, Also in · Zbl 0823.93035
[9] Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE trans. autom. control, AC-36, 1241-1253, (1991) · Zbl 0768.93044
[10] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P.V., Adaptive nonlinear control without overparametrization, Syst. control lett., 19, 177-185, (1992) · Zbl 0763.93043
[11] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P.V., Nonlinear and adaptive control design, (1995), Wiley New York · Zbl 0763.93043
[12] Marino, R.; Tomei, P., Global adaptive output-feedback control of nonlinear systems, part i: linear parameterization; part ii: nonlinear parameterization, IEEE trans. autom. control, AC-38, 17-49, (1993) · Zbl 0783.93032
[13] Narendra, K.S.; Annaswamy, A.M., ()
[14] Narendra, K.S.; Boskovic, J.D., A combined direct, indirect, and variable structure method for robust adaptive control, IEEE trans. autom. control, AC-37, 262-268, (1992)
[15] Polycarpou, M.M.; Ioannou, P.A., A robust adaptive nonlinear control design, (), 1365-1369 · Zbl 0847.93031
[16] Pomet, J.B.; Praly, L., Adaptive nonlinear regulation: estimation from the iyapunov equation, IEEE trans. autom. control, AC-37, 729-740, (1992) · Zbl 0755.93071
[17] Qu, Z., Robust control of nonlinear uncertain systems under generalized matching conditions, Automatica, 29, 985-998, (1993) · Zbl 0776.93041
[18] Qu, Z.; Dawson, D.M.; Dorsey, J.F., Exponentially stable trajectory following of robotic manipulators under a class of adaptive controls, Automatica, 28, 579-586, (1992) · Zbl 0766.93056
[19] Reed, J.S.; loannou, P.A., Instability analysis and robust adaptive control of robotic manipulators, IEEE trans. robotics automation, RA-5, 381-386, (1989)
[20] Sastry, S.; Isidori, A., Adaptive control of linearizable systems, IEEE trans. autom. control, AC-34, 1123-1131, (1989) · Zbl 0693.93046
[21] Slotine, J.J.E., The robust control of robot manipulators, Int. J. robotics res., 4, 49-63, (1985)
[22] Slotine, J.J.E.; Li, W., Applied nonlinear control, (1991), Prentice-Hall Englewood Cliffs, NJ
[23] Teel, A.R., Adaptive tracking with robust stability, (), 570-575
[24] Utkin, V.I., ()
[25] Yao, B.; Tomizuka, M., Comparative experiments of robust and adaptive control with new robust adaptive controllers for robot manipulators, (), 1290-1295
[26] Yao, B.; Tomizuka, M., Robust desired compensation adaptive control of robot manipulators with guaranteed transient performance, (), 1830-1836
[27] Yao, B.; Tomizuka, M.; Yao, B.; Tomizuka, M., Smooth adaptive sliding mode control of robot manipulators with guaranteed transient performance, (), ASME J. dyn. syst., measurement, control, 118, 764-775, (1994), Also · Zbl 0866.93065
[28] Young, K.K.D., Controller design for a manipulator using the theory of variable structure systems, IEEE trans. syst. man cybernetics, SMC-8, 101-109, (1978) · Zbl 0369.93002
[29] Yu, H.; Seneviratne, L.D.; Earles, S.W.E., Robust adaptive control for robot manipulators using a combined method, (), 612-617 · Zbl 0800.93833
[30] Zinober, A.S.I., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.