zbMATH — the first resource for mathematics

Applications of coding theory to the construction of modular lattices. (English) Zbl 0876.94053
The author studies codes obtained by starting with a maximal order \(D\) in \(K\) which is either an imaginary quadratic field, or a quaternion field with center \(Q\) ramified at infinity and taking a left submodule in \((d/pD)^n\). She obtains general bounds for these codes and constructs some extremal self-dual codes.

94B99 Theory of error-correcting codes and error-detecting codes
06C05 Modular lattices, Desarguesian lattices
Full Text: DOI
[1] Assmus, E.F.; Mattson, H.F., New 5-designs, J. combin. theory, 6, 122-151, (1969) · Zbl 0179.02901
[2] Conway, J.H.; Curtis, R.T.; Norton, S.P.; Parker, R.A.; Wilson, R.A., ATLAS of finite groups, (1985), Oxford Univ. Press Oxford · Zbl 0568.20001
[3] Bachoc, C., Voisinages au sens de kesner pour LES réseaux quaternioniens, Comm. math. helvet., 70, 350-374, (1995) · Zbl 0843.11022
[4] C. Batut, H.-G. Quebbeman, R. Scharlau, Computations of cyclotomic lattices, Exp. Math. · Zbl 0873.11026
[5] Conway, J.H.; Pless, V.; Sloane, N.J.A., Self-dual codes overGFGF, IEEE trans. inform. theory, IT-25, 312-322, (1979) · Zbl 0401.94025
[6] Conway, J.H.; Sloane, N.J.A., Sphere packings, lattices and groups, (1988), Springer-Verlag Heidelberg · Zbl 0634.52002
[7] Conway, J.H.; Sloane, N.J.A., The coxeter – todd lattice, the mitchell group, and related sphere packings, Math. proc. Cambridge phil. soc., 93, 421-440, (1983) · Zbl 0518.10035
[8] J. H. Conway, N. J. A. Sloane, 1993, Self-dual codes over the integers modulo 4, 62, 30, 45 · Zbl 0763.94018
[9] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl
[10] Feit, W., Some lattices over\(Q(−3)\), J. algebra, 52, 248-263, (1978) · Zbl 0377.10018
[11] P. Gaborit, Mass formula for self-dual codes over \(Z\)_4q+uqrings
[12] MacWilliams, F.J.; Odlysko, A.M.; Sloane, N.J.A., Self-dual codes over \(F\)_4, J. combin. theory ser. A, 25, 288-318, (1978) · Zbl 0397.94013
[13] Mallows, C.L.; Odlysko, A.M.; Sloane, N.J.A., Upper bounds for modular forms, lattices and codes, J. algebra, 36, 68-76, (1975) · Zbl 0311.94002
[14] MacWilliams, F.J.; Sloane, N.J.A., The theory of error-correcting codes, (1977), North-Holland Amsterdam · Zbl 0369.94008
[15] J. Martinet, 1995, Structures algébriques sur les réseaux, Number Theory, S. David, Séminaire de Théorie des Nombres de Paris, 1992-93, Cambridge Univ. Press, Cambridge
[16] J. Martinet, Les réseaux parfaits des espaces euclidiens
[17] Nebe, G., Endliche rationale matrixgruppen vom Grad 24, aachener beiträge zur Mathematik, (1995)
[18] G. Nebe, Finite subgroups ofGl_n(\(Q\)) for 25⩽n, Comm. Algebra
[19] Nebe, G.; Plesken, W., Finite rational matrix groups, Mem. am. math. soc., 116, 556, (1995) · Zbl 0837.20056
[20] Quebbemann, H.-G., An application of Siegel’s formula over quaternion orders, Mathematika, 31, 12-16, (1984) · Zbl 0538.10027
[21] Quebbemann, H.-G., A construction of integral lattices, Mathematika, 31, 138-141, (1984) · Zbl 0538.10028
[22] Quebbemann, H.-G., Lattices with theta-functions for\(G2)\), J. algebra, 105, 443-450, (1987) · Zbl 0609.10026
[23] Quebbemann, H.-G., Modular lattices in Euclidean spaces, J. number theory, 54, 190-202, (1995) · Zbl 0874.11038
[24] Sloane, N.J.A., Error-correcting codes and invariant theory: new applications of nineteenth century technique, Amer. math. monthly, 84, 82-107, (1977) · Zbl 0357.94014
[25] R. Scharlau, B. Hemkemeier, Classification of integral lattices with large class number · Zbl 0919.11031
[26] Vigneras, M.-F., Arithmétique des algèbres de quaternions, Lecture notes in mathematics, Vol. 800, (1980), Springer-Verlag New York/Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.