zbMATH — the first resource for mathematics

The existence of an intermediate phase for the contact process on trees. (English) Zbl 0878.60061
Summary: Let \(\mathbb{T}_d\) be a homogeneous tree in which every vertex has \(d\) neighbors. A new proof is given that the contact process on \(\mathbb{T}_d\) exhibits two phase transitions when \(d\geq 3\), a behavior which distinguishes it from the contact process on \(\mathbb{Z}^n\). This is the first proof which does not involve calculation of bounds on critical values, and it is much shorter than the previous proof for the binary tree, \(\mathbb{T}_3\). The method is extended to prove the existence of an intermediate phase for a more general class of trees with exponential growth and certain symmetry properties, for which no such result was previously known.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] BEZUIDENHOUT, C. and GRIMMETT, G. 1990. The critical process dies out. Ann. Probab. 18 1462 1482. Z. · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[2] DURRETT, R. 1980. On the growth of one-dimensional contact processes. Ann. Probab. 8 890 907. Z. · Zbl 0457.60082 · doi:10.1214/aop/1176994619
[3] DURRET, R. 1988. Lecture Notes on Particle Sy stems and Percolation. Wadsworth, Pacific Grove, CA. Z.
[4] DURRETT, R. and SCHINAZI, R. 1995. Intermediate phase for the contact process on a tree. Ann. Probab. 23 668 673. Z. · Zbl 0830.60093 · doi:10.1214/aop/1176988283
[5] HARRIS, T. E. 1978. Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355 378. Z. · Zbl 0378.60106 · doi:10.1214/aop/1176995523
[6] LIGGETT, T. M. 1985. Interacting Particle Sy stems. Springer, New York. Z.
[7] LIGGETT, T. M. 1996. Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1455 1490. Z. · Zbl 0871.60087 · doi:10.1214/aop/1041903202
[8] MADRAS, N. and SCHINAZI, R. 1992. Branching random walks on trees. Stochastic Process. Appl. 42 255 267. · Zbl 0763.60042 · doi:10.1016/0304-4149(92)90038-R
[9] MORROW, G., SCHINAZI, R. and ZHANG, Y. 1994. The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250 255. Z. JSTOR: · Zbl 0798.60091 · doi:10.2307/3215251 · links.jstor.org
[10] PEMANTLE, R. 1992. The contact process on trees. Ann. Probab. 20 2089 2116. Z. · Zbl 0762.60098 · doi:10.1214/aop/1176989541
[11] TRETy AKOV, A. Y. and KONNO, N. 1996. Phase transition of the contact process on the binary tree. Preprint. Z. · Zbl 0972.82510 · doi:10.1143/JPSJ.64.4069
[12] WILLIAMS, D. 1991. Probability with Martingales. Cambridge Univ. Press. · Zbl 0722.60001 · doi:10.1017/CBO9780511813658
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.