×

zbMATH — the first resource for mathematics

Schur duality in the toroidal setting. (English) Zbl 0879.17007
The classical Frobenius-Schur duality gives a correspondence between finite-dimensional representations of the symmetric and general linear groups. The present paper extends this correspondence to the case where the general linear group is replaced by a quantum analogue of the group of maps from a 2-dimensional torus into a general linear group. The role of the symmetric group is played by Cherednik’s double affine Hecke algebra. The representations induced, however, are now infinite-dimensional.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys.165, 555–568 (1994) · Zbl 0807.17013 · doi:10.1007/BF02099423
[2] Cherednik, I.: Double-affine Hecke algebras, Knizhnik-Zamolodchikov equations, and MacDonald’s operators. Intern. Math. Res. Notices, Duke Math. J.68, 171–180 (1992) · Zbl 0770.17004 · doi:10.1155/S1073792892000199
[3] Cherednik, I.: A new interpretation of Gelfand-Tzetlin basis. Duke Math. J.54, 563–578 (1978) · Zbl 0645.17006 · doi:10.1215/S0012-7094-87-05423-8
[4] Chari, V., Pressley, A.: Quantum Affine Algebras and Affine Hecke Algebras. Preprint q-alg9501003 · Zbl 0881.17011
[5] Drinfeld, V.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl.36, 212–216 (1988) · Zbl 0667.16004
[6] Drinfeld, V.: Yangians and degenerate affine Hecke algebras. Funct. Anal. Appl.20, 62–64 (1986) · Zbl 0602.14031 · doi:10.1007/BF01077320
[7] Ginzburg, V., Kapranov, M., Vasserot, E.: Langlands reciprocity for algebraic surfaces. Math. Res. Lett.2, 147–160 (1995) · Zbl 0914.11040
[8] Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties Contemp. Math.175, 101–130 (1994) · Zbl 0818.17018
[9] Jimbo, M.: Aq-analogue ofU(gl(N+1)), Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys.11, 247–252 (1986) · Zbl 0602.17005 · doi:10.1007/BF00400222
[10] Lusztig, G.: Introduction to Quantum groups. Boston: Birkhäuser, 1993 (Progress in Math.110) · Zbl 0788.17010
[11] Moody, R. V., Rao, S. E., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata35, 283–307 (1990) · Zbl 0704.17011 · doi:10.1007/BF00147350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.