×

How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition. (English) Zbl 0879.65078

The authors solve the problem of the division of an arbitrary polyhedron into a set of tetrahedra with local refinement of the obtained tetrahedral meshes. Their main result states that the refined tetrahedra satisfy a so-called regularity ball condition, i.e., they do not degenerate when the discretization parameter tends to zero.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ”The selfadaptive approach in the finite element method,” in Proc. MAFELAP II, Ed., Academic Press, New York, 1976, 125-142.
[2] Bornemann, Internat. J. Numer. Methods Engrg. 36 pp 3187– (1993) · Zbl 0780.73073
[3] ”Multilevel finite element approximation: theory & applications,” in Teubner-Skripte zur Numerik, and , Eds., Teubner, Stuttgart, 1994. · Zbl 0830.65107
[4] ”Multilevel iterative techniques,” Ph. D. thesis, Pennsylvania State Univ., 1988.
[5] ”Simplicial mesh generation with applications,” Ph. D. thesis, Cornell Univ., 1992.
[6] Strouboulis, Comput. Methods Appl. Mech. Engrg. 100 pp 359– (1992) · Zbl 0782.65127
[7] Bänsch, Impact. Comput. Sci. Engrg. 3 pp 181– (1991) · Zbl 0744.65074
[8] Field, Internat. J. Numer. Methods Engrg. 31 pp 413– (1991) · Zbl 0825.73792
[9] Golias, Internat. J. Numer. Methods Engrg. 37 pp 793– (1994) · Zbl 0796.73061
[10] Ong, SIAM J. Sci. Comput. 15 pp 1134– (1994) · Zbl 0807.65123
[11] Křížek, Apl. Mat. 27 pp 46– (1982)
[12] Rosenberg, Math. Comp. 29 pp 390– (1975)
[13] Demkowicz, Comput. Methods Appl. Mech. Engrg. 77 pp 79– (1989) · Zbl 0723.73074
[14] Automatic Mesh Generation, John Wiley & Sons, Masson, 1991.
[15] Joe, SIAM J. Sci. Statist. Comput. 10 pp 718– (1989) · Zbl 0681.65087
[16] Lohner, Internat. J. Numer. Methods Fluids 8 pp 1135– (1988) · Zbl 0668.76035
[17] Cavendish, Internat. J. Numer. Methods Engrg. 21 pp 329– (1985) · Zbl 0573.65090
[18] Conti, Internat. J. Numer. Methods Engrg. 37 pp 3211– (1994) · Zbl 0821.65077
[19] Frey, Internat. J. Numer. Methods Engrg. 37 pp 2735– (1994) · Zbl 0925.73783
[20] George, Impact Comput. Sci. Engrg. 2 pp 187– (1990) · Zbl 0717.65095
[21] Kettunen, Internat. J. Numer. Methods Engrg. 38 pp 99– (1995) · Zbl 0822.65096
[22] Weatherill, Internat. J. Numer. Methods Engrg. 37 pp 2005– (1994) · Zbl 0806.76073
[23] Wright, Internat. J. Numer. Methods Engrg. 37 pp 1841– (1994) · Zbl 0806.65116
[24] , and , ”Refinement algorithms and data structures for regular local mesh refinements,” in Scientific Computing, et al., Eds., IMACS/North-Holland, Amsterdam, 1983, 3-17.
[25] Babuška, Comput. Methods Appl. Mech. Engrg. 61 pp 1– (1987) · Zbl 0593.65064
[26] Bank, Math. Comp. 44 pp 283– (1985)
[27] Jamet, RAIRO Anal. Numér. 10 pp 43– (1976)
[28] Křížek, SIAM J. Numer. Anal. 29 pp 513– (1992) · Zbl 0755.41003
[29] Fiedler, Časopis Pěst. Mat. XII pp 297– (1954)
[30] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.