×

zbMATH — the first resource for mathematics

Euler-Chebyshev methods for integro-differential equations. (English) Zbl 0881.65141
Some explicit methods are constructed and analysed for solving initial value problems for systems of integro-differential equations with expensive right hand side functions whose Jacobian has its stiff eigenvalues along the negative axis.

MSC:
65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
45J05 Integro-ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bakker, M., Analytic aspects of a minimax problem, (), (in Dutch)
[2] Brunner, H.; van der Houwen, P.J., The numerical solution of Volterra equations, () · Zbl 0611.65092
[3] Brunner, H.; Lambert, J.D., Stability of numerical methods for Volterra integro-differential equations, Computing, 12, 75-89, (1974) · Zbl 0282.65088
[4] Cushing, J.M., Integro-differential equations and delay models in population dynamics, () · Zbl 0363.92014
[5] Golub, G.H.; van Loan, C.F., Matrix computations, (1989), John Hopkins University Press London · Zbl 0733.65016
[6] Jameson, A., The evolution of computational methods in aerodynamics, J. appl. mech., 50, 1052-1076, (1983) · Zbl 0556.76045
[7] Lerat, A., A class of implicit difference schemes for hyperbolic conservation laws, C. R. acad. sci. Paris Sér. I math., 288, 1033-1036, (1979), (in French) · Zbl 0439.65075
[8] Sommeijer, B.P.; van der Houwen, P.J., On the economization of stabilized Runge-Kutta methods with applications to parabolic initial value problems, Z. angew. math. mech., 61, 105-114, (1981) · Zbl 0461.65056
[9] Turkel, E., Acceleration to a steady state for the Euler equations, (), 218-311
[10] van der Houwen, P.J.; Boon, C.; Wubs, F.W., Analysis of smoothing matrices for the preconditioning of elliptic difference equations, Z. angew. math. mech., 68, 3-10, (1988) · Zbl 0637.65101
[11] van der Houwen, P.J.; Sommeijer, B.P., On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values, Z. angew. math. mech., 60, 479-485, (1980) · Zbl 0455.65052
[12] van der Houwen, P.J.; Sommeijer, B.P., A special class of multistep Runge-Kutta methods with extended real stability interval, IMA J. numer. anal., 2, 183-209, (1982) · Zbl 0481.65038
[13] van der Houwen, P.J.; Sommeijer, B.P., Improving the stability of predictor-corrector methods by residue smoothing, IMA J. numer. anal., 10, 361-378, (1990) · Zbl 0704.65060
[14] Vasudeva Murthy, A.S.; Verwer, J.G., Solving parabolic integro-differential equations by an explicit integration method, J. comput. appl. math., 39, 121-132, (1992) · Zbl 0746.65102
[15] Verwer, J.G.; Blom, J.G.; Hundsdorfer, W.H., An implicit-explicit approach for atmospheric transport-chemistry problems, Appl. numer. math., 20, 191-209, (1996) · Zbl 0853.76092
[16] Wilson, J.C., Stability of Richtmyer-type difference schemes in any finite number of space variables and their comparison with multistep strang schemes, J. inst. math. appl., 10, 238-257, (1972) · Zbl 0249.65063
[17] Wubs, F.W., Stabilization of explicit methods for hyperbolic partial differential equations, Internat. J. numer. methods fluids, 6, 641-657, (1986) · Zbl 0611.65056
[18] Wubs, F.W., Numerical solution of the shallow-water equations, () · Zbl 0653.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.