×

zbMATH — the first resource for mathematics

Three-dimensional Floquet stability analysis of the wake of a circular cylinder. (English) Zbl 0882.76028
Summary: Results are reported from a highly accurate, global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300. The analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of \(188.5\pm 1.0\). The critical spanwise wavelength is \(3.96\pm 0.02\) diameters and the critical Floquet mode corresponds to a ‘mode \(A\)’ instability. At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength 0.822 diameters at onset. Stability spectra and corresponding neutral stability curves are presented for Reynolds numbers up to 300.

MSC:
76E99 Hydrodynamic stability
76D25 Wakes and jets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wu, J. Fluid Mech. 312 pp 201– (1996)
[2] DOI: 10.1017/S0022112087002234 · Zbl 0639.76041
[3] Wu, J. Fluid Struct. 8 pp 621– (1994)
[4] Williamson, Z. Flugwiss. Weltraumforsch 14 pp 38– (1990)
[5] DOI: 10.1146/annurev.fl.22.010190.002353
[6] DOI: 10.1006/jcph.1995.1208 · Zbl 0840.76070
[7] DOI: 10.1146/annurev.fl.28.010196.002401
[8] DOI: 10.1063/1.868939 · Zbl 1087.76041
[9] DOI: 10.1146/annurev.fl.28.010196.002401
[10] Hammache, J. Fluid Mech. 232 pp 567– (1991)
[11] DOI: 10.1063/1.868949
[12] Williamson, J. Fluid Mech. 243 pp 393– (1992)
[13] DOI: 10.1007/BF01061511 · Zbl 0666.65033
[14] Williamson, J. Fluid Mech. 206 pp 579– (1989)
[15] DOI: 10.1063/1.857603 · Zbl 0713.76039
[16] DOI: 10.1063/1.866925
[17] DOI: 10.1063/1.857473
[18] DOI: 10.1063/1.868924
[19] DOI: 10.1137/1035090 · Zbl 0786.65032
[20] DOI: 10.1063/1.858409
[21] DOI: 10.1016/0894-1777(95)00098-4
[22] DOI: 10.1063/1.868632
[23] DOI: 10.1016/0167-6105(93)90007-B
[24] Norberg, J. Fluid Mech. 258 pp 287– (1994)
[25] DOI: 10.1063/1.858616
[26] DOI: 10.1063/1.868433 · Zbl 0826.76071
[27] Noack, J. Fluid Mech. 270 pp 297– (1994)
[28] DOI: 10.1103/PhysRevLett.75.1300
[29] DOI: 10.1007/BF00209358
[30] DOI: 10.1017/S0022112088001181
[31] DOI: 10.1017/S0022112087002222 · Zbl 0641.76046
[32] Mansy, J. Fluid Mech. 270 pp 277– (1994)
[33] DOI: 10.1063/1.868730 · Zbl 0836.76033
[34] Leweke, J. Fluid Mech. 288 pp 265– (1995)
[35] DOI: 10.1103/PhysRevLett.72.3174
[36] Lasheras, Phys. Fluids 2 pp 371– (1990)
[37] Karniadakis, J. Fluid Mech. 238 pp 1– (1992)
[38] Karniadakis, J. Fluid Mech. 199 pp 441– (1989)
[39] DOI: 10.1063/1.868601
[40] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.