×

zbMATH — the first resource for mathematics

Tracking control of mobile robots: A case study in backstepping. (English) Zbl 0882.93057
The paper considers the controlled system \[ \dot x=\nu\cos\theta,\quad\dot y=\nu\sin\theta,\quad\dot\theta= \omega, \] where \(\nu\) and \(\omega\) are control variables. Feedback stabilization and tracking are considered using a suitable quadratic Lyapunov function.

MSC:
93C85 Automated systems (robots, etc.) in control theory
93D15 Stabilization of systems by feedback
70Q05 Control of mechanical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] d’Andreá-Novel, B.; Campion, G.; Bastin, G., Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach, Int. J. robust nonlinear control, 5, 243-267, (1995) · Zbl 0837.93046
[2] Bloch, A. and Drakunov, S. (1994) Stabilization of a nonholonomic system via sliding modes. In Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL, pp. 2961-2963.
[3] Brockett, R.W. (1983) Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory, ed. R.W. Brockett, R.S. Milman and H.J. Sussman, pp. 181-191. Birkhäuser, Boston. · Zbl 0528.93051
[4] Byrnes, C.I.; Isidori, A., New results and examples in nonlinear feedback stabilization, Syst. control lett., 12, 437-442, (1989) · Zbl 0684.93059
[5] Canudas de Wit, C., Berghuis, H. and Nijmeijer, H. (1994) Practical stabilization of nonlinear systems in chained form. In Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL, pp. 3475-3480.
[6] Canudas de Wit, C., Siciliano, B. and Bastin, G., eds (1996). Theory of Robot Control. Springer-Verlag, London. · Zbl 0854.70001
[7] Fierro, R. and Lewis, F.L. (1995) Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, pp. 3805-3810.
[8] Fliess, M.; Levine, J.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systems: introductory theory and examples, Int. J. control, 61, 1327-1361, (1995) · Zbl 0838.93022
[9] Fliess, M., Levine, J., Martin, P. and Rouchon, P. (1995b) Design of trajectory stabilizing feedback for driftless flat systems. In Proc. 3rd European Control Conf., Rome, pp. 1882-1887.
[10] Jiang, Z.P., Iterative design of time-varying stabilizers for multi-input systems in chained form, Syst. control lett., 28, 255-262, (1996) · Zbl 0866.93084
[11] Jiang, Z.P. and Nijmeijer, H. (1996) Tracking control of mobile robots: a case study in backstepping, memorandum 1321, University of Twente.
[12] Jiang, Z.P. and Nijmeijer, H. (1997) Backstepping-based tracking control of nonholonomic chained systems. Submitted to European Control Conf. (ECC’97).
[13] Jiang, Z.P. and Pomet, J.-B. (1994) Combining backstepping and time-varying techniques for a new set of adaptive controllers. In Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL, pp. 2207-2212; also Int. J. Adaptive Control Sig. Process. 10, 47-59 (1996).
[14] Jiang, Z.P. and Pomet, J.-B. (1995) Backstepping-based adaptive controllers for uncertain nonholonomic systems. In Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, pp. 1573-1578.
[15] Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990) A stable tracking control scheme for an autonomous mobile robot. In Proc. IEEE International Conf. on Robotics and Automation, pp. 384-389.
[16] Khalil, H.K. (1992) Nonlinear Systems. Macmillan, New York. · Zbl 0969.34001
[17] Koditschek, D.E. (1987) Adaptive techniques for mechanical systems. In Proc. 5th Yale Workshop on Adaptive Systems, New Haven, CT, pp. 259-265.
[18] Kolmanovsky, H.; McClamroch, N.H., Developments in nonholonomic control systems, IEEE control syst. magazine, 15, 6, 20-36, (1995)
[19] Krstić, M., Kanellakopoulos, I. and Kokotović, P.V. (1995) Nonlinear and Adaptive Control Design. Wiley, New York.
[20] McCloskey, R.T. and Murray, R.M. (1994) Exponential stabilization of driftless nonlinear control systems via time-varying, homogeneous feedback. In Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, pp. 1317-1322.
[21] Micaelli, A. and Samson, C. (1993) Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. INRIA Technical Report No. 2097.
[22] Murray, R.M.; Sastry, S.S., Nonholonomic motion planning: steering using sinusoids, IEEE trans. autom. control, AC-38, 700-716, (1993) · Zbl 0800.93840
[23] Murray, R.M., Walsh, G. and Sastry, S.S. (1992) Stabilization and tracking for nonholonomic control systems using time-varying state feedback. In IFAC Nonlinear Control Systems Design, Bordeaux, ed. M. Fliess, pp. 109-114.
[24] Oelen, W.; van Amerongen, J., Robust tracking control of two-degrees-of-freedom mobile robots, Control engng practice, 2, 333-340, (1994)
[25] Oelen, W.; Berghuis, H.; Nijmeijer, H.; Canudas de Wit, C., Hybrid stabilizing control on a real mobile robot, IEEE robotics automation magazine, 2, 16-23, (1995)
[26] Pomet, J.-B., Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Syst. control lett., 18, 147-158, (1992) · Zbl 0744.93084
[27] Popov, V.M. (1973) Hyperstability of Control Systems. Springer-Verlag, Berlin. · Zbl 0276.93033
[28] Samson, C. (1991) Velocity and torque feedback control of a nonholonomic cart. In Proc. Advanced Robot Control, ed. C. Canudas de Wit, pp. 125-151. Lecture Notes in Control and Information Sciences, Vol. 162, Springer-Verlag, Berlin. · Zbl 0800.93910
[29] Samson, C. and Ait-Abderrahim, K. (1991) Feedback control of a nonholonomic wheeled cart in Cartesian space. In Proc. IEEE International Conf. on Robotics and Automation, Sacramento, CA, pp. 1136-1141.
[30] Tsinias, J., Sufficient Lyapunov-like conditions for stabilization, Math. control sig. syst., 2, 343-357, (1989) · Zbl 0688.93048
[31] Vidyasagar, M. (1993) Nonlinear Systems Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0900.93132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.