×

Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains. (English) Zbl 0883.35040

The following semilinear elliptic problem \[ -\Delta u=u^p\text{ in }\Omega_\sigma,\;\Omega_\sigma\subset\mathbb{R}^m,\quad u>0 \text{ in }\Omega_\sigma,\quad u=0\text{ on }\partial\Omega_\sigma\tag{P} \] is considered. Here \(\Omega_\sigma\) (for \(\sigma>0\)) denotes a bounded Lipschitz domain which is referred to as a singularly perturbed one and \(1<p<(m+2)/(m-2)\) for \(m>2\), and \(1<p<\infty\) for \(m=2\). It is assumed that: (i) the domains \(\Omega_\sigma\) are \(\mathbb{Z}_2\) symmetric, (ii) the singular parts of \(\Omega_\sigma\) are of quite general form, (iii) the measure of \(\Omega_\sigma\) has at most polynomial growth with respect to \(\sigma^{-1}\). The main result says that for \(\sigma\) sufficiently small there exists a large solution of problem (P).
The existence is proved even when the condition of nondegeneracy does not hold. The latter is necessary if a degree argument is used for the proof of existence as in earlier papers of E. N. Dancer [Math. Ann. 285, No. 4, 647-669 (1989; Zbl 0699.35103) and Math. Z. 206, No. 4, 551-562 (1991; Zbl 0705.35043)]. The proof is based on a variational method to find a local minimizer for the energy \(\int_{\Omega_\sigma}|\nabla u|^2 dx\) under constraints \(\int_{\Omega_\sigma} u^{p+1} dx=1\) and \(u(x_1,x_2,\dots,x_m)=u(-x_1,x_2,\dots,x_m)\) whose local minimum value goes to \(\infty\) as \(\sigma\to 0\).

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adams, R.A. 1975. ”Sobolev spaces”. NewYork, London: Academic Press. · Zbl 0314.46030
[2] Brezis H., J. Math. Pures Appl 58 pp 137– (1979)
[3] Berestycki H., Analysis et cetera pp 115–
[4] DOI: 10.1007/BF01244896 · Zbl 0784.35025
[5] DOI: 10.1002/cpa.3160470105 · Zbl 0806.35129
[6] DOI: 10.1016/0022-0396(88)90021-6 · Zbl 0662.34025
[7] DOI: 10.1016/0022-0396(90)90005-A · Zbl 0729.35050
[8] DOI: 10.1007/BF01452052 · Zbl 0699.35103
[9] DOI: 10.1007/BF02571362 · Zbl 0705.35043
[10] DOI: 10.1007/BF01221125 · Zbl 0425.35020
[11] DOI: 10.1080/03605308108820196 · Zbl 0462.35041
[12] Gillbarg, D. and Trudinger, N.S. 1983. ”Elliptic Partial Differential Equations of second order”. Berlin, NewYork and Tokyo: Springer. Grundlehren 224
[13] DOI: 10.1080/03605309108820770 · Zbl 0741.35014
[14] DOI: 10.1007/BF01394245 · Zbl 0538.35058
[15] Lions P.L., Ann. Inst. H. Poincaré 1 pp 109– (1984)
[16] Lions P.L., Ann. Inst. H. Poincaré 1 pp 223– (1984)
[17] Ladyzhenskaya, O.A. and Ural’tseva, N.N. 1968. ”Linear elliptic and Quasilinear Elliptic Equations”. NewYork and London: Academic Press.
[18] DOI: 10.1002/cpa.3160380105 · Zbl 0581.35021
[19] DOI: 10.1007/978-1-4612-5282-5
[20] Struwe M., Application to Nonlinear partial differential equations and Hamiltonian systems (1990) · Zbl 0746.49010
[21] Stummel F., Lecture Notes in Mathematics 503 pp 110– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.