×

zbMATH — the first resource for mathematics

Maximal localization in the presence of minimal uncertainties in positions and in momenta. (English) Zbl 0883.46049
The authors continue their study of representations of the ‘corrected’ canonical commutation relations \[ [x,p]= i\hbar(1+\alpha x^2+\beta p^2), \] where \(\alpha\geq 0\) and \(\beta\geq 0\). In particular, they study a representation on a generalized Fock space and calculate a maximum position localization state \(\psi^{\text{ml}}_x\) that has the properties \[ \langle\psi^{\text{ml}}_x, x\psi^{\text{ml}}_x\rangle= x,\;\langle\psi^{\text{ml}}_x, p\psi^{\text{ml}}_x\rangle= 0,\;(\Delta x)_{\psi^{\text{ml}}_x}=\Delta x_{\min}, \] the minimum value of the uncertainty in \(x\). The authors use a generalization of Rodriguez’s formula to calculate the properties of the coefficients in the expansion of \(\psi^{\text{ml}}_x\) in terms of the Fock basis, and the transition probabilities between two different states \(\psi^{\text{ml}}_x\) and \(\psi^{\text{ml}}_{x'}\).

MSC:
46N50 Applications of functional analysis in quantum physics
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1103/PhysRevD.15.2795
[2] DOI: 10.1016/0375-9601(94)90838-9
[3] DOI: 10.1016/0370-2693(89)91366-X
[4] DOI: 10.1016/0370-2693(90)91927-4
[5] DOI: 10.1103/PhysRevD.49.5182
[6] DOI: 10.1103/PhysRevD.49.5182
[7] DOI: 10.1142/S0217751X95000085
[8] DOI: 10.1007/BF00420513 · Zbl 0771.17012
[9] DOI: 10.1063/1.530204 · Zbl 0796.17016
[10] Kempf A., Proc. XXII DGM Conf., Sept. 93, Adv. Appl. Cliff. Alg. (Proc. Suppl.) 1 pp 87– (1994)
[11] DOI: 10.1063/1.530798 · Zbl 0877.17017
[12] DOI: 10.1007/BF01690456
[13] DOI: 10.1103/PhysRevD.52.1108
[14] DOI: 10.1016/0370-2693(92)91044-A
[15] DOI: 10.1007/BF00762790 · Zbl 0806.17018
[16] Koornwinder T. H., Trans. AMS 333 pp 445– (1992)
[17] DOI: 10.1016/0370-2693(94)90940-7
[18] DOI: 10.1063/1.530644 · Zbl 0826.17018
[19] Faddeev L. D., Alg. Anal. 1 pp 178– (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.