×

zbMATH — the first resource for mathematics

Existence theorems for vector variational inequalities. (English) Zbl 0887.49004
The authors study vector variational inequalities. Existence theorems for quasi-vector variational inequalities with set-valued mappings are established. In particular, weakly pseudomonotone and quasimonotone conditions of set-valued mappings are used. These conditions are weaker than the monotonicity used in other research reports.

MSC:
49J40 Variational inequalities
47H04 Set-valued operators
49J27 Existence theories for problems in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-247X(90)90223-3 · Zbl 0719.90078 · doi:10.1016/0022-247X(90)90223-3
[2] Diestel, Vector measures (1970)
[3] DOI: 10.1007/BF01581072 · Zbl 0778.90049 · doi:10.1007/BF01581072
[4] DOI: 10.1007/BF00940446 · Zbl 0796.49014 · doi:10.1007/BF00940446
[5] DOI: 10.1016/0022-247X(88)90033-9 · Zbl 0671.47043 · doi:10.1016/0022-247X(88)90033-9
[6] Luc, Bull. Austral. Math. Soc. 48 pp 393– (1993)
[7] DOI: 10.1016/0893-9659(93)90077-Z · Zbl 0804.49004 · doi:10.1016/0893-9659(93)90077-Z
[8] Kinderlehrer, An introduction to variational inequalities and their applications (1980) · Zbl 0457.35001
[9] DOI: 10.1007/BF00940531 · Zbl 0679.90055 · doi:10.1007/BF00940531
[10] Jameson, Ordered linear spaces 141 (1970) · Zbl 0196.13401 · doi:10.1007/BFb0059130
[11] DOI: 10.1016/0022-247X(89)90095-4 · Zbl 0712.47047 · doi:10.1016/0022-247X(89)90095-4
[12] DOI: 10.1016/0305-0548(90)90022-Y · Zbl 0681.90049 · doi:10.1016/0305-0548(90)90022-Y
[13] DOI: 10.1007/BF02192248 · Zbl 0904.49005 · doi:10.1007/BF02192248
[14] Giannessi, Variational inequalities and complementarity problems pp 151– (1980)
[15] DOI: 10.1007/BF01353421 · Zbl 0093.36701 · doi:10.1007/BF01353421
[16] Dunford, Linear operators Part I: General theory (1988) · Zbl 0635.47001
[17] DOI: 10.1007/BF00940320 · Zbl 0795.49010 · doi:10.1007/BF00940320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.