×

Multiple homoclinics for a class of singular Hamiltonian systems. (English) Zbl 0887.58017

The authors investigate a second order Hamiltonian system of the form \(\ddot u + \nabla V(u) = 0\) in \(\mathbb{R}^n\), where the potential has a unique strict global maximum at the origin \(p\) and a singular set \(S \not\ni p\) such that \(\mathbb{R}^n \backslash S\) is open, path-connected and has non-trivial fundamental group \(\pi_1 = G\). Some additional conditions on behaviour of \(V\) near \(S\) and \(p\) are also assumed so that the class of systems under consideration includes, for instance, the classical \(n\)-body problem. Under some suitable conditions on \(V\) and \(G\) the authors prove the existence of multiple homoclinics, each one belonging to a different class of \(G\).

MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
70F10 \(n\)-body problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosetti, A.; Zelati, V.Coti, Multiple homoclinic orbits for a class of conservative systems, Rend. sem. mat. univ. Padova, 89, 177-194, (1993) · Zbl 0806.58018
[2] Bertotti, M.L.; Bolotin, S.V., A variational approach for homoclinics in almost periodic Hamiltonian systems, Comm. appl. nonlinear anal., 2, 43-57, (1995) · Zbl 0858.34039
[3] M. L. Bertotti, L. Jeanjean, Multiplicity of homoclinic solutions for singular second order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A · Zbl 0868.34001
[4] Bessi, U., Multiple homoclinic orbits for autonomous singular potentials, Proc. roy. soc. Edinburgh sect. A, 124, 785-802, (1994) · Zbl 0812.58088
[5] Bolotin, S.V., Existence of homoclinic motions, Vestnik moskov. univ. ser. I mat. mekh., 6, 98-103, (1980)
[6] Bolotin, S.V., Variational criteria for non integrability and chaos in Hamiltonian systems, Hamiltonian systems: integrability and chaotic behavior, (1994), Kluwer Academic Dordrecht/Norwell
[7] S. V. Bolotin, P. Negrini, Variational criterion for nonintegrability of a double pendulum · Zbl 0951.37029
[8] B. Buffoni, Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems, J. Differential Equations · Zbl 0832.34032
[9] B. Buffoni, E. Séré, A global condition for quasi random behavior in a class of conservative systems · Zbl 0860.58027
[10] P. Caldiroli, L. Jeanjean, Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equation · Zbl 0887.34044
[11] P. Caldiroli, M. Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems inR2, Ann. Inst. H. Poincare Anal. Non Linéaire · Zbl 0907.58014
[12] K. Cieliebak, E. Séré, Pseudo-holomorphic curves and multiplicity of homoclinic orbits · Zbl 0998.37500
[13] Zelati, V.Coti; keland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. ann., 288, 133-160, (1990) · Zbl 0731.34050
[14] Zelati, V.Coti; Rabinowitz, P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. amer. math. soc., 4, 693-727, (1991) · Zbl 0744.34045
[15] Gordon, W.B., Conservative dynamical systems involving strong forces, Trans. amer. math. soc., 204, 113-135, (1975) · Zbl 0276.58005
[16] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, (1983), Springer-Verlag Berlin/New York · Zbl 0515.34001
[17] Hedlund, G.A., The dynamics of geodesic flows, Bull. amer. math. soc., 45, 241-260, (1939) · JFM 65.0793.02
[18] Lions, P.L., The concentration – compactness principle in the calculus of variations, Rev. mat. iberoamericana, 1, 145-201, (1985) · Zbl 0704.49005
[19] Melnikov, V.K., On the stability of the center for periodic perturbations, Trans. Moscow math. soc., 12, 1-57, (1963)
[20] Meyer, K.R.; Sell, G.R., Melnikov transformations, Bernoulli bundles and almost periodic perturbations, Trans. amer. math. soc., 314, 63-105, (1989) · Zbl 0707.34041
[21] P. Montecchiari, M. Nolasco, S. Terracini, Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems · Zbl 0886.58014
[22] Morse, M., A fundamental class of geodesics in any closed surface of genus greater than one, Trans. amer. math. soc., 26, 25-61, (1924) · JFM 50.0466.04
[23] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, 1897, 1899, Gauthier-Villars, Paris · JFM 30.0834.08
[24] P. H. Rabinowitz, Homoclinics for a singular Hamiltonian system, Geometric Analysis and the Calculus of Variations, J. Jost, International Press
[25] P. H. Rabinowitz, Homoclinics for an almost periodically forced Hamiltonian system, Topol. Methods Nonlinear Analysis
[26] Rabinowitz, P.H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. differential equations, 1995, (1995) · Zbl 0828.34034
[27] Rotman, J.J., An introduction to algebraic topology, Grad. texts in math., 119, (1993) · Zbl 0661.55001
[28] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 27-42, (1992) · Zbl 0725.58017
[29] Séré, E., Looking for the Bernoulli shift, Ann. inst. H. Poincaré anal. non linéaire, 10, 561-590, (1993) · Zbl 0803.58013
[30] Tanaka, K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. inst. H. Poincaré anal. non linéaire, 7, 427-438, (1990) · Zbl 0712.58026
[31] Tanaka, K., A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear differential equations appl., 1, 149-162, (1994) · Zbl 0819.34032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.