zbMATH — the first resource for mathematics

The exponentiated Weibull family: Some properties and a flood data application. (English) Zbl 0887.62019
Summary: The exponentiated Weibull family, a Weibull extension obtained by adding a second shape parameter, consists of regular distributions with bathtub shaped, unimodal and a broad variety of monotone hazard rates. It can be used for modeling lifetime data from reliability, survival and population studies, various extreme value data, and for constructing isotones of the tests of the composite hypothesis of exponentiality. The structural analysis of the family in this paper includes the study of its skewness and kurtosis properties, density shapes and tail character, and the associated extreme value and extreme spacings distributions. Its usefulness in modeling extreme value data is illustrated using the floods of the Floyd River at James, Iowa.

62E15 Exact distribution theory in statistics
62N05 Reliability and life testing
62P99 Applications of statistics
Full Text: DOI
[1] Barlow R. E., In Reliability and Fault Tree Analysis (1975)
[2] DOI: 10.1029/WR025i005p00979 · doi:10.1029/WR025i005p00979
[3] DOI: 10.1080/01621459.1952.10501160 · doi:10.1080/01621459.1952.10501160
[4] DOI: 10.1080/01621459.1988.10478612 · doi:10.1080/01621459.1988.10478612
[5] DOI: 10.1080/03610928808829820 · Zbl 0696.62021 · doi:10.1080/03610928808829820
[6] DOI: 10.1080/03610928908830153 · Zbl 0696.62047 · doi:10.1080/03610928908830153
[7] DOI: 10.1002/qj.49708134804 · doi:10.1002/qj.49708134804
[8] Johnson N. L., Continuous Univariate Distributions (1970)
[9] Mudholkar G. S., ASA Proc, Statist. Graph, Sect pp 82– (1990)
[10] DOI: 10.1080/03610929408831309 · Zbl 0825.62132 · doi:10.1080/03610929408831309
[11] Mudholkar G. S., J. Roy Statist Soc 53 (4) pp 221– (1991)
[12] Mudholkar G. S., ASA Proceedings of the Section on Quality and Productivity 53 (4) pp 223– (1993)
[13] DOI: 10.1109/24.229504 · Zbl 0800.62609 · doi:10.1109/24.229504
[14] DOI: 10.1080/00401706.1995.10484376 · doi:10.1080/00401706.1995.10484376
[15] Mudholkar G. S., Submitted for publication 37 (4) (1996)
[16] Pearson E.S., Biomeirika Tables for Statisticians, Vol, 1 and 2 (1969)
[17] Pericchi L. R., In A Celebration of Statistics: ISI Centenary Volume pp 511– (1985) · doi:10.1007/978-1-4613-8560-8_23
[18] DOI: 10.1093/biomet/62.3.607 · Zbl 0328.62013 · doi:10.1093/biomet/62.3.607
[19] DOI: 10.1080/01621459.1984.10477114 · doi:10.1080/01621459.1984.10477114
[20] DOI: 10.1214/aoms/1177704481 · Zbl 0121.36802 · doi:10.1214/aoms/1177704481
[21] DOI: 10.1080/03610928408828748 · doi:10.1080/03610928408828748
[22] Guidelines For Determining Flood Flow Frequency (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.