×

Computational procedure for simulating the contact/impact response in flexible multibody systems. (English) Zbl 0887.73069

Summary: We discretize the multibody system by using beam and shell finite element models. The conservation of momentum and restitution equations are used as local velocity constraints to determine the ‘post-impact’ velocities of the impacting nodes. In the case when a node impacts an element edge, the impact effect is distributed to the element nodes by using the element shape functions. Two restitution parameters – one in the normal impact direction, and the other in the tangential impact directions – can be used to model friction. Two numerical examples are presented to demonstrate the effectiveness of the procedure.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Iura, M.; Atluri, S. N., Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames, Comput. Struct., 55, 3, 453-462 (1995) · Zbl 0920.73118
[2] Bakr, E. M.; Shabana, A. A., Geometrically nonliner analysis of multibody systems, Comput. Struct., 23, 6, 739-751 (1986) · Zbl 0589.73060
[3] Wu, S. C.; Haug, E. J.; Kim, S. S., A variational approach to the dynamics of flexible multibody systems, Mech. Struct. Mach., 17, 1, 3-32 (1989)
[4] Simo, J. C.; Vu-Quoc, L., On the dynamics of space rods undergoing large motions. A geometrically exact approach, Comput. Methods Appl. Mech. Engrg., 66, 125-161 (1988) · Zbl 0618.73100
[5] Downer, J. D.; Park, K. C.; Chiou, J. C., Dynamics of flexible beams for multibody systems: A computational procedure, Comput. Methods Appl. Mech. Engrg., 96, 373-408 (1992) · Zbl 0764.73045
[6] Rice, D. L.; Ting, E. C., Large displacement transient analysis of flexible structures, Int. J. Numer. Methods Engrg., 36, 1541-1562 (1993) · Zbl 0778.73074
[7] Wasfy, T. M., Modeling continuum multibody systems using the finite element method and element converted frames, Machine Elements Machine Dyn., (Pennock, G. R., Proc. 23rd ASME Mechanisms Conference. Proc. 23rd ASME Mechanisms Conference, Minneapolis, MN. Proc. 23rd ASME Mechanisms Conference. Proc. 23rd ASME Mechanisms Conference, Minneapolis, MN, ASME DE, Vol. 71 (1994)), 327-336
[8] Wasfy, T. M., A torsional spring-like beam element for the dynamic analysis of flexible multibody systems, Int. J Numer. Methods Engrg., 39, 7, 1079-1096 (1996) · Zbl 0879.73076
[9] Wasfy, T. M.; Noor, A. K., Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements, Comput. Methods Appl. Mech. Engrg., 138, 1-4, 187-211 (1996) · Zbl 0882.73050
[10] Fuente, H. M.; Felippa, C. A., Ephemeral penalty functions for contact-impact dynamics, Finite Elements Anal. Des., 9, 177-191 (1991)
[11] Papadopoulos, P.; Taylor, R. L., A simple algorithm for three-dimensional finite element analysis of contact problems, Comput. Struct., 46, 6, 1107-1118 (1993) · Zbl 0773.73089
[12] Lee, S. H., Rudimentary considerations for adaptive gap/friction element based on the penalty method, Comput. Struct., 47, 6, 1043-1056 (1993) · Zbl 0783.73073
[13] Zhong, Z.-H., Finite Element Procedures for Contact-Impact Problems (1993), Oxford Science Publications: Oxford Science Publications Oxford
[14] Wu, S. C.; Haug, E. J., A substructure technique for dynamics of flexible mechanical systems with contact-impact, J. Mech. Des., 112, 390-398 (1990)
[15] Belytschko, T.; Mark, O. N., Contact-impact by the pinball algorithm with penalty and Lagrangian methods, Int. J. Numer. Methods Engrg., 31, 547-572 (1991) · Zbl 0825.73984
[16] Belytschko, T.; Jiang, L.; Rogers, R. J., Combined Lagrangian multiplier and penalty function finite element technique for elastic impact analysis, Comput. Struct., 30, 6, 1219-1229 (1988) · Zbl 0664.73046
[17] Simo, J. C.; Laursen, T. A., An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 97-116 (1992) · Zbl 0755.73085
[18] Zboinski, G., A finite element algorithm for incremental analysis of large three-dimensional frictional contact problems of linear elasticity, Comput. Struct., 46, 4, 669-677 (1993) · Zbl 0779.73076
[19] Lankarani, H. M.; Nikravesh, P. E., A contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Des., 112, 369-376 (1990)
[20] Khulief, Y. A.; Shabana, A. A., Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion, J. Mech. Trans. Aut. Des., 108, 38-45 (1986) · Zbl 0589.70002
[21] Gau, W.-H.; Shabana, A. A., Effect of finite rotation on the propagation of elastic waves in constrained mechanical systems, J. Mech. Des., 114, 384-393 (1992)
[22] Rismantab-Sany, J.; Shabana, A. A., On the use of the momentum balance in the impact analysis of constrained elastic systems, J. Vib. Acoust., 112, 119-126 (1990)
[23] Yigit, A. S.; Ulsoy, A. G.; Scott, R. A., Dynamics of a radially rotating beam with impact, Parts I and II, J. Vib. Acoust., 112, 65-77 (1990)
[24] Brach, R. M., Mechanical Impact Dynamics: Rigid Body Collisions (1991), John Wiley & Sons: John Wiley & Sons New York
[25] Goldsmith, W., Impact (1960), Edward Arnold Publishers Ltd. · Zbl 0122.42501
[26] Wasfy, T. M., Modeling contact/impact of flexible manipulators with a fixed rigid surface, (Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Vol. 1 (1995)), 621-626, Japan
[27] Belytschko, T.; Hsieh, B. J., Non-linear transient finite element analysis with convected co-ordinates, Int. J. Numer. Methods Engrg., 7, 255-271 (1973) · Zbl 0265.73062
[28] Belytschko, T.; Schwer, L.; Klein, M. K., Large displacement, transient analysis of space frames, Int. J. Numer. Methods Engrg., 11, 65-84 (1977) · Zbl 0347.73053
[29] Belytschko, T.; Tsay, C. S., A stabilization procedure for the quadrilateral plate element with one integration point, Int. J. Numer. Methods Engrg., 19, 405-419 (1983) · Zbl 0502.73058
[30] Belytschko, T.; Lin, J. I.; Tsay, C. S., Explicit algorithms for nonlinear dynamics of shells, Comput. Methods Appl. Mech. Engrg., 42, 225-251 (1984) · Zbl 0512.73073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.