×

zbMATH — the first resource for mathematics

Error bounds in mathematical programming. (English) Zbl 0887.90165
Summary: Originated from the practical implementation and numerical considerations of iterative methods for solving mathematical programs, the study of error bounds has grown and proliferated in many interesting areas within mathematical programming. This paper gives a comprehensive, state-of-the-art survey of the extensive theory and rich applications of error bounds for inequality and optimization systems and solution sets of equilibrium problems.

MSC:
90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Abadie, On the Kuhn-Tucker theorem, in: J. Abadie, ed.,Nonlinear Programming (North-Holland, Amsterdam, 1967) 19–36. · Zbl 0183.22803
[2] G. Auchmuty, Variational principles for variational inequalities,Numerical Functional Analysis and Optimization 10 (1989) 863–874. · Zbl 0678.49010
[3] A. Auslender,Optimisation: Méthodes Numériques (Masson, Paris, 1976).
[4] A. Auslender, Convergence of stationary sequences for variational inequalities with maximal monotone operators,Applied Mathematics and Optimization 28 (1993) 161–172. · Zbl 0788.49014
[5] A. Auslender, R. Cominetti and J.-P. Crouzeix, Convex functions with unbounded level sets and applications to duality theory,SIAM Journal on Optimization 3 (1993) 669–687. · Zbl 0808.90102
[6] A. Auslender and J.P. Crouzeix, Global regularity theorems,Mathematics of Operations Research 13 (1988) 243–253. · Zbl 0655.90059
[7] A. Auslender and J.P. Crouzeix, Well behaved asymptotical convex functions,Analyse Non-linéare (1989) 101–122. · Zbl 0675.90070
[8] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems,SIAM Review 38 (1996) 367–426. · Zbl 0865.47039
[9] H.H. Bauschke, J.M. Borwein and A.S. Lewis, The method of cyclic projections for closed convex sets in Hilbert Space, in: Y. Censor and S. Reisch, eds.,Proc. Special Session on Optimization and Nonlinear Analysis, Jerusalem (1995), to appear. · Zbl 0874.47029
[10] C. Bergthaller and I. Singer, The distance to a polyhedron,Linear Algebra and its Applications 169 (1992) 111–129. · Zbl 0759.15008
[11] D.P. Bertsekas,Nonlinear Programming (Athena Scientific, Massachusetts, 1995).
[12] D.P. Bertsekas and E. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem,Mathematical Programming Study 12 (1982) 139–159. · Zbl 0478.90071
[13] D.P. Bertsekas and P. Tseng, Partial proximal minimization algorithms for convex programming,SIAM Journal on Optimization 4 (1994) 551–572. · Zbl 0819.90069
[14] E. Bierstone and P.D. Milman, Semianalytic and subanalytic sets,Institut des Hautes Etudes Scientifiques, Publications Mathématiques 67 (1988) 5–42. · Zbl 0674.32002
[15] J.M. Borwein, Stability and regular points of inequality systems,Journal of Optimization Theory and Applications 48 (1986) 9–52. · Zbl 0557.49020
[16] J.M. Borwein and D.M. Zhang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps,Journal of Mathematical Analysis and Applications 134 (1988) 441–459. · Zbl 0654.49004
[17] D. Boukary and A.V. Fiacco, Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993,Optimization 31 (1995) 301–334. · Zbl 0820.90097
[18] J.V. Burke, On the identification of active constraints II: The nonconvex case,SIAM Journal on Numerical Analysis 27 (1990) 1081–1102. · Zbl 0703.65034
[19] J.V. Burke, An exact penalization viewpoint of constrained optimization problem,SIAM Journal on Control and Optimization 29 (1991) 968–998. · Zbl 0737.90060
[20] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming,SIAM Journal on Control and Optimization 31 (1993) 1340–1359. · Zbl 0791.90040
[21] J.V. Burke and J.J. Moré, On the identification of active constraints,SIAM Journal on Numerical Analysis 25 (1988) 1197–1211. · Zbl 0662.65052
[22] J.V. Burke and J.J. Moré, Exposing constraints,SIAM Journal on Optimization 4 (1994) 573–595. · Zbl 0809.65058
[23] J.V. Burke and P. Tseng, A unified analysis of Hoffman’s bound via Fenchel duality,SIAM Journal on Optimization 6 (1996) 265–282. · Zbl 0849.90093
[24] C.C. Chou, K.F. Ng, and J.S. Pang, Minimizing and stationary sequences of optimization problems,SIAM Journal on Control and Optimization, revision under review. · Zbl 0909.90235
[25] F.H. Clarke,Optimization and Nonsmooth Analysis (John Wiley and Sons, New York, 1983). · Zbl 0582.49001
[26] W. Cook, A.M.H. Gerards, A. Schrijver and E. Tardös, Sensitivity theorems in integer linear programming,Mathematical Programming 34 (1986) 251–264. · Zbl 0648.90055
[27] R.W. Cottle, J.S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992). · Zbl 0757.90078
[28] J.P. Dedieu, Penalty functions in subanalytic optimization,Optimization 26 (1992) 27–32. · Zbl 0817.90103
[29] S. Deng, Perturbation analysis of a condition number for convex system, Manuscript, Dept. of Mathematics, Northern Illinois University (DeKalb, revised September 1995).
[30] S. Deng, Global error bounds for convex inequality systems in Banach Spaces, Manuscript, Dept. of Mathematics, Northern Illinois University (DeKalb, October 1995).
[31] S. Deng, Computable error bounds for convex inequality systems in reflexive Banach Spaces,SIAM Journal on Optimization 7 (1997) 274–279. · Zbl 0872.90070
[32] S. Deng and H. Hu, Computable error bounds for semidefinite programming, Manuscript, Department of Mathematics, Northern Illinois University (DeKalb, revised June 1996). · Zbl 0944.90057
[33] G. Di Pillo and F. Facchinei, Exact barrier functions methods for Lipschitz programs,Applied Mathematics and Optimization 32 (1995) 1–31. · Zbl 0837.90108
[34] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization,SIAM Journal on Control and Optimization 27 (1989) 1333–1360. · Zbl 0681.49035
[35] A.L. Dontchev and R.T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets,SIAM Journal on Optimization 6 (1996) 1087–1105. · Zbl 0899.49004
[36] A.S. Dontchev and T. Zolezzi,Well-Posed Optimization Problems, Lecture Notes in Mathematics, Vol. 1543 (Springer, Berlin, 1991). · Zbl 0797.49001
[37] J.C. Dunn, Global and asymptotic convergence rate estimates for a class of projected gradient processes,SIAM Journal on Control and Optimization 19 (1981) 368–400. · Zbl 0488.49015
[38] A.S. El-Bakry, R.A. Tapia and Y. Zhang, A study of indicators for identifying zero variables in interior-point methods,SIAM Review 36 (1994) 45–72. · Zbl 0801.65056
[39] I.I. Eremin, The method of penalties in convex programming,Doklady Akademy Nauk. USSR 173 (1967) 748–751.
[40] F. Facchinei, A. Fischer and C. Kanzow, On the accurate identification of active constraints, Manuscript, Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Roma, 1996. · Zbl 0960.90080
[41] F. Facchinei and S. Lucidi, Convergence to second order stationary points in inequality constrained optimization, manuscript, Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Roma, 1996. · Zbl 0977.90049
[42] M.C. Ferris, Weak sharp minima and penalty functions in mathematical programming, Tech. Rept. 779, Computer Science Dept., University of Wisconsin, Madison, 1988.
[43] M.C. Ferris, Finite termination of the proximal point algorithm,Mathematical Programming 50 (1991) 359–366. · Zbl 0741.90051
[44] M.C. Ferris and O.L. Mangasarian, Minimum principle sufficiency,Mathematical Programming 57 (1992) 1–14. · Zbl 0760.90076
[45] M.C. Ferris and O.L. Mangasarian, Error bounds and strong upper semicontinuity for monotone affine variational inequalities,Annals of Operations Research 47 (1993) 293–305. · Zbl 0794.49008
[46] M.C. Ferris and J.S. Pang, Nondegenerate solutions and related concepts in affine variational inequalities,SIAM Journal on Control and Optimization 34 (1996) 244–263. · Zbl 0845.90118
[47] M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems,SIAM Review, to appear. · Zbl 0891.90158
[48] M.C. Ferris and J.S. Pang, eds.,Complementarity and Variational Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997).
[49] A. Fischer, A special Newton-type optimization method,Optimization 24 (1992) 269–284. · Zbl 0814.65063
[50] A. Fischer, An NCP-function and its use for the solution of complementarity problems, in: D.Z. Du, L. Qi and R.S. Womersley, eds.,Recent Advances in Nonsmooth Optimization (World Scientific, Singapore, 1995) 88–105. · Zbl 0948.90133
[51] A. Fischer and C. Kanzow, On finite termination of an iterative method for linear complementarity problems,Mathematical Programming 74 (1996) 279–292. · Zbl 0855.90125
[52] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,Mathematical Programming 53 (1992) 99–110. · Zbl 0756.90081
[53] M. Fukushima, Merit functions for variational inequality and complementarity problems, in: G. Di Pillo and F. Giannessi, eds.,Nonlinear Optimization and Applications (Plenum Press, New York, 1996) 155–170. · Zbl 0996.90082
[54] M. Fukushima and J.S. Pang, Minimizing and stationary sequences of merit functions for complementarity problems and variational inequalities, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 91–104. · Zbl 0886.90153
[55] S.A. Gabriel and J.S. Pang, An inexact NE/SQP method for solving the nonlinear complementarity problem,Computational Optimization and Applications 1 (1992) 67–92. · Zbl 0794.90071
[56] M.S. Gowda, On the continuity of the solution map in linear complementarity problems,SIAM Journal on Optimization 2 (1992) 619–634. · Zbl 0779.90074
[57] M.S. Gowda, An analysis of zero set and global error bound properties of a piecewise affine function via its recession function,SIAM Journal on Matrix Analysis 17 (1996) 594–609. · Zbl 0853.90110
[58] M.S. Gowda and J.S. Pang, On the boundedness and stability of solutions to the affine variational inequality problem,SIAM Journal on Control and Optimization 32 (1994) 421–441. · Zbl 0800.93967
[59] M.S. Gowda and R. Sznajder, On the Lipschitzian properties of polyhedral multifunctions,Mathematical Programming 74 (1996) 267–278. · Zbl 0854.49010
[60] M.S. Gowda and R. Sznajder, On the pseudo-Lipschitzian behavior of the inverse of a piecewise affine function, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 117–131. · Zbl 0886.90155
[61] O. Güler, On the convergence of the proximal point algorithm for convex minimization,SIAM Journal on Control and Optimization 29 (1991) 403–419. · Zbl 0737.90047
[62] O. Güler, A.J. Hoffman and U.G. Rothblum, Approximations to solutions to systems of linear inequalities,SIAM Journal on Matrix Analysis and Applications 16 (1995) 688–696. · Zbl 0830.15016
[63] P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,Mathematical Programming 48 (1990) 161–220. · Zbl 0734.90098
[64] D.W. Hearn, The gap function of a convex program,Operations Research Letters 1 (1982) 67–71. · Zbl 0486.90070
[65] A.J. Hoffman, On approximate solutions of systems of linear inequalities,Journal of Research of the National Bureau of Standards 49 (1952) 263–265.
[66] A. Hoffmann, The distance to the intersection of two convex sets expressed by the distances to each of them,Mathematische Nachrichten 157 (1992) 81–98. · Zbl 0773.52002
[67] L. Hörmander, On the division of distributions by polynomials,Arkiv for Mathematik 3 (1958) 555–568. · Zbl 0131.11903
[68] A.N. Iusem, On dual convergence and the rate of primal convergence of Bregman’s convex programming method,SIAM Journal on Optimization 1 (1991) 401–423. · Zbl 0753.90051
[69] A.N. Iusem and M. Teboulle, Convergence rate analysis of nonquadratic proximal methods for convex and linear programming,Mathematics of Operations Research 20 (1995) 657–677. · Zbl 0845.90099
[70] C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity problem to differentiable unconstrained minimization,Journal of Optimization Theory and Applications 90 (1996) 581–603. · Zbl 0866.90124
[71] C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and their properties,Journal of Optimization Theory and Applications (1997), to appear. · Zbl 0886.90146
[72] D. Klatte, Lipschitz stability and Hoffman’s error bounds for convex inequality systems, in:Proc. Conf. on Parametric Optimization and Related Topics IV, Enschede (1995), to appear. · Zbl 0879.90175
[73] D. Klatte, Hoffman’s error bound for systems of convex inequalities, in: A.V. Fiacco, ed.,Mathematical Programming with Data Perturbations (Marcel Dekker, New York), to appear. · Zbl 0911.90315
[74] D. Klatte and W. Li, Asymptotic constraint qualifications and global error bounds for convex inequalities, manuscript, Dept. of Mathematics and Statistics, Old Dominion University, Norfolk, 1996. · Zbl 1050.90557
[75] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone linear complementarity problem in symmetric matrices,SIAM Journal on Optimization 7 (1997) 86–125. · Zbl 0872.90098
[76] G.M. Korpelevich, The extragradient method for finding saddle points and other problems,Matecon 12 (1976) 747–756. · Zbl 0342.90044
[77] B.W. Kort and D.P. Bertsekas, Combined primal-dual and penalty methods for convex programmingSIAM Journal on Control and Optimization 14 (1976) 268–294. · Zbl 0332.90035
[78] B. Lemaire, Bonne position, conditionnement, et bon comportement asymptotique, Exposé No. 5, Seminaire D’Analyse Convexe, Université de Montpellier, Montpellier, 1992.
[79] E.S. Levitin and B.T. Polyak, Convergence of minimizing sequences in conditional extremum problems,Soviet Mathematics Doklady 7 (1966) 764–767. · Zbl 0161.07002
[80] A.S. Lewis and J.S. Pang, Error bounds for convex inequality systems, in J.P. Crouzeix, ed.,Proc. 5th Symp. on Generalized Convexity, Luminy-Marseille, (1996), to appear. · Zbl 0953.90048
[81] W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program,Linear Algebra and its Applications 187 (1993) 15–40. · Zbl 0809.65057
[82] Wu Li, Remarks on convergence of the matrix splitting algorithm for the symmetric linear complementarity problem,SIAM Journal on Optimization 3 (1993) 155–164. · Zbl 0786.90074
[83] Wu Li, Error bounds for piecewise convex quadratic programs and applications,SIAM Journal on Control and Optimization 33 (1995) 1510–1529. · Zbl 0836.90125
[84] W. Li, Abadie’s constraint qualification, metric regularity and error bounds for differentiable convex inequalities,SIAM Journal on Optimization 7 (1997). · Zbl 0891.90132
[85] W. Li and I. Singer, Global error bounds for convex multifunctions and applications, Manuscript, Dept. of Mathematics and Statistics, Old Dominion University, Norfolk, 1996. · Zbl 0977.90054
[86] M.S. Lojasiewicz, Sur le problème de la division,Studia Mathematica 18 (1959) 87–136. · Zbl 0115.10203
[87] A.V. Lotov, An estimate of solution set perturbations for a system of linear inequalities,Optimization Methods and Software 6 (1995) 1–24.
[88] X.D. Luo and Z.Q. Luo, Extensions of Hoffman’s error bound to polynomial systems,SIAM Journal on Optimization 4 (1994) 383–392. · Zbl 0821.90113
[89] X.D. Luo and P. Tseng, On a global projection-type error bound for the linear complementarity problem,Linear Algebra and its Applications (1996). · Zbl 0872.90099
[90] Z.Q. Luo, Convergence analysis of primal-dual interior point algorithms for convex quadratic programs, in: R.P. Agarwal, ed.,Recent Trends in Optimization Theory and Applications (World Scientific, Singapore, 1995). · Zbl 0874.90157
[91] Z.Q. Luo, O.L. Mangasarian, J. Ren and M.V. Solodov, New error bounds for the linear complementarity problem,Mathematics of Operations Research 19 (1994) 880–892. · Zbl 0833.90113
[92] Z.Q. Luo and J.S. Pang, Error bounds for analytic systems and their applications,Mathematical Programming 67 (1994) 1–28. · Zbl 0813.90116
[93] Z.Q. Luo, J.S. Pang and D. Ralph,Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, MA, 1996). · Zbl 0870.90092
[94] Z.Q. Luo, J.S. Pang, D. Ralph and S.Q. Wu, Exact penalization and stationarity conditions of mathematical programs with equilibrium,Mathematical Programming 75 (1996) 19–76. · Zbl 0870.90092
[95] Z.Q. Luo, J.F. Sturm and S.Z. Zhang, Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming, Manuscript, Econometric Institute, Erasmus University, Rotterdam, 1996. · Zbl 0910.90229
[96] Z.Q. Luo and P. Tseng, On the linear convergence of descent methods for convex essentially smooth minimization,SIAM Journal on Control and Optimization 30 (1992) 408–425. · Zbl 0756.90084
[97] Z.Q. Luo and P. Tseng, On the convergence of coordinate descent method for convex differentiable minimization,Journal of Optimization Theory and Applications 72 (1992) 7–35 · Zbl 0795.90069
[98] Z.Q. Luo and P. Tseng, Error bound and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem,SIAM Journal on Optimization 2 (1992) 43–54. · Zbl 0777.49010
[99] Z.Q. Luo and P. Tseng, On the convergence of the affine scaling algorithm,Mathematical Programming 56 (1992) 301–319. · Zbl 0762.90052
[100] Z.Q. Luo and P. Tseng, Error bounds and the convergence analysis of feasible descent methods: a general approach,Annals of Operations Research 46 (1993) 157–178. · Zbl 0793.90076
[101] Z.Q. Luo and P. Tseng, Error bound and reduced gradient projection algorithms for convex minimization over a polyhedral set,SIAM Journal on Optimization 3 (1993) 43–59. · Zbl 0793.90052
[102] Z.Q. Luo and P. Tseng, On the convergence rate of dual ascent methods for linearly constrained convex minimization,Mathematics of Operations Research (1993) 846–867. · Zbl 0804.90103
[103] Z.Q. Luo and P. Tseng, Perturbation analysis of a condition number for linear systems,SIAM Journal on Matrix Analysis and Applications 15 (1994) 636–660. · Zbl 0799.65063
[104] Z.Q. Luo and P. Tseng, On the rate of convergence of a distributed asynchronous routing algorithm,IEEE Transactions on Automatic Control 39 (1994) 1123–1129. · Zbl 0800.49061
[105] Z.Q. Luo and P. Tseng, A new class of merit functions for the nonlinear complementarity problem, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, 1997) 204–225. · Zbl 0886.90158
[106] F.J. Luque, Asymptotic convergence analysis of the proximal point algorithm,SIAM Journal on Control and Optimization 22 (1984) 277–293. · Zbl 0533.49028
[107] O.L. Mangasarian, A condition number of linear inequalities and equalities, in: G. Bamber and O. Optiz, eds.,Proc. 6th Symp. über Operations Research, Universität Augsburg, 1981, Methods of Operations Research, Vol. 43 (Athennäum/Hain/Scriptor/Hanstein, Konigstein, 1981) 3–15. · Zbl 0505.90042
[108] O.L. Mangasarian, A condition number for differentiable convex inequalities,Mathematics of Operations Research 10 (1985) 175–179. · Zbl 0565.90059
[109] O.L. Mangasarian, Error bounds for nondegenerate monotone linear complementarity problems,Mathematical Programming 48 (1990) 437–445. · Zbl 0716.90094
[110] O.L. Mangasarian, Global error bounds for monotone affine variational inequality problems,Linear Algebra and its Applications 174 (1992) 153–163. · Zbl 0794.90072
[111] O.L. Mangasarian, Error bounds for inconsistent linear inequalities and programs,Operations Research Letters 15 (1994) 187–192. · Zbl 0814.90082
[112] O.L. Mangasarian, Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification, Mathematical Programming Tech. Rept. 96-04, Computer Sciences Dept., University of Wisconsin, Madison, 1996. · Zbl 0920.90119
[113] O.L. Mangasarian, The ill-posed linear complementarity problem, in: M.C. Ferris and J.S. Pang, eds.,Variational and Complementarity Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995, (SIAM Publications, Philadelphia, PA, 1997) 226–233. · Zbl 0886.90159
[114] O.L. Mangasarian and J.S. Pang, Exact penalty functions for mathematical programs with linear complementarity constraints,Optimization, to appear. · Zbl 0888.90134
[115] O.L. Mangasarian and J. Ren, New improved error bounds for the linear complementarity problem,Mathematical Programming 66 (1994) 241–257. · Zbl 0829.90124
[116] O.L. Mangasarian and T.-H. Shiau, Error bounds for monotone linear complementarity problems,Mathematical Programming 36 (1986) 81–89. · Zbl 0613.90095
[117] O.L. Mangasarian and T.-H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems,SIAM Journal on Control and Optimization 25 (1987) 583–595. · Zbl 0613.90066
[118] O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization,Mathematical Programming 62 (1993) 277–297. · Zbl 0813.90117
[119] R. Mathias and J.S. Pang, Error bounds for the linear complementarity problem with aP-matrix,Linear Algebra and its Applications 132 (1990) 123–136. · Zbl 0711.90077
[120] R.D.C. Monteiro and J.S. Pang, On two interior-point mappings for nonlinear semidefinite complementarity problems, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 1996.
[121] R.D.C. Monteiro and J.S. Pang, A potential reduction Newton method for constrained equations, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 1997.
[122] R.D.C. Monteiro and T. Tsuchiya, Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem,Mathematics of Operations Research 21 (1996) 793–814. · Zbl 0867.90111
[123] R.D.C. Monteiro and S.J. Wright, Local convergence of interior-point algorithms for degenerate monotone LCP,Computational Optimization and Applications 3 (1994) 131–156. · Zbl 0801.90110
[124] B. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties,Transactions of the American Mathematical Society 340 (1993) 1–36. · Zbl 0791.49018
[125] G.S.R. Murthy, T. Parthasarathy and M. Sabatini, LipschitzianQ-matrices areP-matrices,Mathematical Programming 74 (1996) 55–58. · Zbl 0870.90094
[126] A.M. Odlyzko, Asymptotic enumeration methods, in: R.L. Graham, M. Grötschel and L. Lovász, eds.,Handbook of Combinatorics (The MIT Press, North-Holland, Cambridge, 1995), Chapter 22, 1063–1230. · Zbl 0845.05005
[127] J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970). · Zbl 0241.65046
[128] J.S. Pang, Inexact Newton methods for the nonlinear complementarity problems,Mathematical Programming 36 (1986) 54–71. · Zbl 0613.90097
[129] J.S. Pang, A posteriori error bound for the linearly-constrained variational inequality problem,Mathematics of Operations Research 12 (1987) 474–484.
[130] J.S. Pang, Complementarity problems, chapter in: R. Horst and P. Pardalos, eds.,Handbook of Global Optimization (Kluwer Academic Publishers, Dordrecht, 1995) 271–338 · Zbl 0833.90114
[131] J.S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity problem,Mathematical Programming 60 (1993) 295–338. · Zbl 0808.90123
[132] J.S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps,Mathematics of Operations Research 21 (1996) 401–426. · Zbl 0857.90122
[133] J.S. Pang and J.M. Yang, Two-stage parallel iterative methods for the symmetric linear complementarity problem,Annals of Operations Research 14 (1988) 61–75. · Zbl 0753.90065
[134] J.M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Tech. Rept., State Key Laboratory of Scientific and Engineering Computing, Academia Sinica, Beijing, 1995.
[135] J.P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions,Nonlinear Analysis, Theory, Methods and Applications 13 (1989) 629–643. · Zbl 0687.54015
[136] D. Ralph, A new proof of Robinson’s homeomorphism theorem for piecewise linear maps,Linear Algebra and its Applications 178 (1993) 249–260. · Zbl 0770.90069
[137] S.M. Robinson, An application of error bounds for convex programming in a linear space,SIAM Journal on Control 13 (1975) 271–273. · Zbl 0297.90072
[138] S.M. Robinson, Regularity and stability for convex multivalued functions,Mathematics of Operations Research 1 (1976) 130–143. · Zbl 0418.52005
[139] S.M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems,SIAM Journal on Numerical Analysis 13 (1976) 497–513. · Zbl 0347.90050
[140] S.M. Robinson, Strongly regular generalized equations,Mathematics of Operations Research 5 (1980) 43–62. · Zbl 0437.90094
[141] S.M. Robinson, Some continuity properties of polyhedral multifunction,Mathematical Programming Study 14 (1981) 206–214. · Zbl 0449.90090
[142] S.M. Robinson, Normal maps induced by linear transformations,Mathematics of Operations Research 16 (1992) 292–309. · Zbl 0746.46039
[143] S.M. Robinson, Homeomorphism conditions for normal maps of polyhedra, in: A. Ioffe, M. Marcus and S. Reich, eds.,Optimization and Nonlinear Analysis (Longman, London, 1992) 691–714. · Zbl 0777.90063
[144] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[145] H. Scheel and S. Scholtes, Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity, Manuscript, Dept. of Engineering, University of Cambridge, Cambridge, 1996. · Zbl 1073.90557
[146] S. Scholtes, Introduction to piecewise differentiable equations, Habilitation Thesis, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Karlsruhe, 1994.
[147] S. Scholtes, Homeomorphism conditions for coherently oriented piecewise affine mappings, Research Rept., Institut für Statistik unde Mathematische Wirtschaftstheorie, Universität Karlsruhe, Karlsruhe, 1994. · Zbl 0869.49013
[148] S. Scholtes and M. Stöhr, Exact penalisation of mathematical programs with equilibrium constraints, Manuscript, Institut für Statistik und Mathematische, Universität Karlsruhe, Karlsruhe, 1996.
[149] R.E. Stone, Lipschitzian matrices are nondegenerate INS-matrices, in: M.C. Ferris and J.S. Pang, eds.,Complementarity and Variational Problems: State of the Art, Proc. Internat. Conf. on Complementarity Problems, 1995 (SIAM Publications, Philadelphia, PA, 1997) 440–451. · Zbl 0886.90164
[150] J.F. Sturm, Superlinear convergence of an algorithm for monotone linear complementarity problems when no strictly complementary solution exists, Manuscript, Econometric Institute, Erasmus University Rotterdam, Rotterdam, 1996. · Zbl 0977.90066
[151] R. Sznajder and M.S. Gowda, Nondegeneracy concepts for zeros of piecewise smooth functions, Mathematics of Operations Research, to appear. · Zbl 0977.90067
[152] K. Taji, M. Fukushima and T. Ibaraki, A globally convergent Newton method for solving strongly monotone variational inequalities,Mathematical Programming 58 (1993) 369–383. · Zbl 0792.49007
[153] P. Tseng, On the rate of convergence of a partially asynchronous gradient projection algorithm,SIAM Journal on Optimization 1 (1991) 603–319. · Zbl 0754.90055
[154] P. Tseng, On linear convergence of iterative methods for the variational inequality problem,Journal of Computational and Applied Mathematics 60 (1995) 237–252. · Zbl 0835.65087
[155] C. Ursescu, Multifunctions with closed convex graph,Czechoslovak Mathematics Journal 25 (1975) 438–441. · Zbl 0318.46006
[156] D.W. Walkup and R.J.B. Wets, A Lipschitzian characterization of convex polyhedra,Proceedings of the American Mathematical Society 20 (1969) 167–173. · Zbl 0182.25003
[157] T. Wang and J.S. Pang, Global error bounds for convex quadratic inequality systems,Optimization 31 (1994) 1–12. · Zbl 0817.90078
[158] J. Warga, A necessary and sufficient condition for a constrained minimum,SIAM Journal on Optimization 2 (1992) 665–667. · Zbl 0770.90068
[159] S.J. Wright, Identifiable surfaces in constrained optimization,SIAM Journal on Control and Optimization 31 (1993) 1063–1079. · Zbl 0804.90105
[160] N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems,SIAM Journal on Control and Optimization 35 (1997) 273–284. · Zbl 0873.49006
[161] N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of variational inequality problems,Journal of Optimization Theory and Applications 92 (1997) 439–456. · Zbl 0879.90180
[162] Y. Ye, A further result on the potential reduction algorithm for theP-matrix linear complementarity problem, in: P. Pardalos ed.,Advances in Optimization and Parallel Computing (North-Holland, New York, 1992) 310–316. · Zbl 0814.90116
[163] W.I. Zangwill, Non-linear programming via penalty functions,Management Science 13 (1967) 344–358. · Zbl 0171.18202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.