Stochastic modeling of the dynamics of \(CD4^ +\) \(T\)-cell infection by HIV and some Monte Carlo studies. (English) Zbl 0887.92021

Summary: We develop a stochastic model for the interaction between \(\text{CD}4^+ \text{T}\) cells and the human immunodeficiency virus (HIV) by taking into account the basic biological mechanism as described, e.g., by A. S. Perelson et al. [Math. Biosci. 114, No. 1, 81-125 (1993; Zbl 0796.92016)], D. Schenzle [Stat. Med. 13, 2067-2079 (1994)]. We studied this stochastic model through extensive Monte Carlo simulations. Our results show that, in some cases, there is a positive probability that the virus will be eliminated by the process. We have also shown that, at the earlier stage of the infection, the probability distributions of the \(\text{CD}4^+ \text{T}\) cells and free HIV are skewed; however, these distributions will eventually converge to the Gaussian distributions after several years. A real-data example is given to illustrate the application of our model.


92C50 Medical applications (general)
92C60 Medical epidemiology
65C05 Monte Carlo methods


Zbl 0796.92016
Full Text: DOI


[1] Perelson, A. S.; Kirschner, D. E.; Boer, R. D., Dynamics of HIV infection of CD \(4^+\) T cells, Math. Biosci., 114, 81-125 (1993) · Zbl 0796.92016
[2] Schenzle, D., A model for AIDS pathogenesis, Stat. Med., 13, 2067-2079 (1994)
[3] Kirschner, D. E.; Perelson, A. S., A model for the immune system response to HIV: AZT treatment studies, (Arino, O.; Axelrod, D.; Kimmel, M.; Langlais, M., Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1, Theory of Epidemics (1995), Wuerz Publishing Ltd: Wuerz Publishing Ltd Winnipeg, Canada), 295-310
[4] Phillips, A. N., Reduction of HIV concentration during acute infection: independence from a specific immune response, Science, 271, 497-499 (1996)
[5] Wu, H.; Tan, W. Y., Modeling and monitoring the progression of HIV infection using nonlinear Kalman filter, (Paper presented at the 1996 Annual Statistical Meeting in Chicago (August 1996)), 4-8
[6] Merrill, S. J., Modeling the interaction of HIV with cells of the immune system, Lect. Notes Biomath., 83, 371-385 (1989)
[7] Bolognesi, D. P., Do antibodies enhance the infection of cells by HIV?, Nature, 340, 431-432 (1989)
[8] Tan, W. Y.; Piantadosi, S., On stochastic growth process with application to stochastic logistic growth, Stat. Sin., 1, 527-540 (1991) · Zbl 0822.60078
[9] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virus and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995)
[10] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996)
[11] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122 (1995)
[12] Tan, W. Y.; Ye, Z., Assessment of effects of different types of HIV-1 and macrophage by a stochastic model of HIV pathogenesis in HIV-infected individuals (1997), Department of Mathematical Sciences, the University of Memphis: Department of Mathematical Sciences, the University of Memphis Memphis, TN, Paper in preparation
[13] Tan, W. Y.; Hsu, H., Some stochastic models of AIDS spread, Stat. Med., 8, 121-136 (1989)
[14] IMSL, MATH/LIBRARY User’s Manual (1989), IMSL: IMSL Houston, Texas
[15] Deacon, N. J.; Tsykin, A.; Soloman, A.; Smith, K.; Ludford-Menting, M.; Hooker, D. J.; McPhee, D. A.; Greenway, A. L.; Ellett, A.; Chatfield, C.; Lawson, V. A.; Crowe, S.; Moerz, A.; Sonza, S.; Learmont, J.; Sullivan, J. S.; Cunningham, A.; Dwyer, D.; Dowton, D.; Mills, J., Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients, Science, 270, 988-991 (1995)
[16] Ratkowsky, D. A., Nonlinear Regression Modeling (1983), Marcel Dekker: Marcel Dekker New York and Basel · Zbl 0572.62054
[17] Perelson, A. S., Modeling the interaction of the immune system with HIV, (Castillo-Chavez, C., Lect. Notes Biomath., Vol. 83 (1989), Springer-Verlag: Springer-Verlag Berlin), 350-370
[18] Ioannidis, J. P.A.; Cappelleri, J. C.; Lau, J.; Sacks, H. S.; Skolnik, P. R., Predictive value of viral load measurements in asymptomatic untreated HIV-1 infection: a mathematical model, AIDS, 10, 3, 255-262 (1996)
[19] Lange, N.; Carlin, B. P.; Gelfand, A. E., Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers (with discussion), J. Am. Stat. Assoc., 87, 419, 615-632 (1992) · Zbl 0850.62838
[20] Kiuchi, A. S.; Hartigan, J. A.; Holford, T. R.; Rubinstein, P.; Stevens, C. E., Change points in the series of T4 counts prior to AIDS, Biometrics, 51, 236-248 (1995) · Zbl 0825.62800
[21] Mellors, J. W.; Rinaldo, C. R.; Gupta, P.; White, R. M.; Todd, J. A.; Kingsley, L. A., Prognosis in HIV-1 infection predicted by the quantity of virus inplasma, Science, 272, 1167-1170 (1996)
[22] Struchiner, C. J.; Halloran, M. E., Modeling AIDS vaccines: the celluar level, Mem. Inst. Oswaldo Cruz Rio de Janeiro, 87, 1, 103-113 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.