×

zbMATH — the first resource for mathematics

Approximate Riemann solvers, parameter vectors, and difference schemes. (Reprint). (English) Zbl 0890.65094
See the review of the original paper [ibid. 43, 357-372 (1981; Zbl 0474.65066)].

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
01A75 Collected or selected works; reprintings or translations of classics
76M20 Finite difference methods applied to problems in fluid mechanics
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
65-03 History of numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. L. Roe, 1981, Proceedings, Seventh Int. Conf. Num. Meth. Fluid Dyn. Springer-Verlag, New York/Berlin
[2] Oleinik, O.A., Trans. amer. math. soc. sect. 2, 33, 285, (1963)
[3] Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, (1972), SIAM Philadelphia
[4] Godunov, S.K., Mat. sb., 47, 271, (1959)
[5] Richtmyer, R.D.; Morton, K.W., Difference method for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[6] Holt, M., Numerical methods in fluid dynamics, (1977), Springer-Verlag New York/Berlin · Zbl 0357.76009
[7] van Leer, B., J. comput. phys., 32, 101, (1979)
[8] Glimm, J., Comm. pure appl. math., 18, 697, (1965)
[9] Chorin, A.J., J. comput. phys., 22, 517, (1976)
[10] Harten, A.; Lax, P.D., NYU report, 20E/ER/03077-167, (1980)
[11] SIAM J. numer. anal., 18, 289, (1981)
[12] Sells, C.C.L., Rae tr, 80065, (1980)
[13] Osher, S.; Solomon, F., Math. comp., 38, 339, (1982)
[14] H. Viviand, 1981, Proceedings, Seventh Int. Conf. Num. Meth. Fluid Dyn. Springer-Verlag, New York/Berlin
[15] Sod, G.A., J. comput. phys., 27, 1, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.