×

zbMATH — the first resource for mathematics

Coupling Boltzmann and Navier-Stokes equations by half fluxes. (English) Zbl 0890.76042
Summary: We introduce an adaptive coupling of the Boltzmann and Navier-Stokes equations to compute hypersonic flows around a vehicle at high altitude. The coupling is achieved by matching half fluxes at the interface of the Boltzmann and Navier-Stokes domains. The domains are determined automatically by computing local kinetic residuals based on a preliminary Navier-Stokes solution. Our method is developed for monoatomic gases. Different numerical results illustrate its validity and limits.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76K05 Hypersonic flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babovsky, H., On a simulation scheme for the Boltzmann equation, Math. methods appl. sci., 8, 223, (1986) · Zbl 0609.76084
[2] Babovsky, H.; Illner, R., A convergence proof for Naubu’s simulation method for the full Boltzmann equation, SIAM J. numer. anal., 26, 45, (1989) · Zbl 0668.76086
[3] Bird, G.A., Molecular gas dynamics and the direct simulations of gas flows, (1994), Clarendon Press Oxford
[4] Bourgat, J.-F.; Le Tallec, P.; Tidriri, M.D., Coupling Boltzmann and navier – stokes by friction, J. comput. phys., 127, 227, (1996) · Zbl 0860.76080
[5] J. F. Bourgat, P. Le Tallec, F. Mallinger, Y. Qiu, M. Tidriri, 1992, Numerical coupling of Boltzmann and Navier-Stokes, Proceedings of the IUTAM Conference on Rarefied Flows for Reentry Problems, Marseille France, Septembre 1992
[6] Brun, R., Transport et relaxation dans LES écoulements gazeux, (1986), Masson Paris
[7] The Boltzmann equation and its application, (1988), Springer-Verlag New York/Berlin
[8] Chan, T.; Glowinski, R.; Periaux, J.; Widlund, O., Proc. second int. symp. on domain decomposition methods for partial differential equations, Los Angeles, CA, January 1988, (1988), SIAM Philadelphia
[9] Chapman, S.; Cowling, T.G., The mathematical theory of nonuniform gases, (1990), Cambridge Univ. Press Cambridge · Zbl 0098.39702
[10] Desvillettes, L.; Herrera, P.; Raymundo, E., A vectorizable simulation method for the Boltzmann equation, Meth. math. num. anal., 28, 745, (1994) · Zbl 0819.76060
[11] Gastaldi, F.; Gastaldi, L., On a domain decomposition approach for the transport equation: theory and finite element approximations, IMA J. numer. anal., 14, (1993)
[12] Gastaldi, F.; Quarteroni, A.; Landriani, G.Sacchi, On the coupling of two-dimensional hyperbolic and elliptic equations: analytical and numerical approach, Proc. second int. symp. on domain decomposition methods for partial differential equations, Los Angeles, CA, January 1988, (1988), SIAM Philadelphia · Zbl 0709.65092
[13] Grad, H., On the kinetic theory of rarefied gases, Comm. pure appl. math., 2, (1949) · Zbl 0037.13104
[14] Gupta, R.; Scott, C.; Moss, J., Slip-boundary equations for multicomponent nonequilibrium airflow, NASA technical paper, 2452, (November 1985)
[15] Illner, R.; Neunzert, H., On simulation methods for the Boltzmann equation, Transp. theory stat. phys., 16, 141, (1987) · Zbl 0623.76084
[16] Le Tallec, P., Domain decomposition methods in computational mechanics, Computational mechanics advances, vol. 1, no. 2, (February 1994)
[17] Levermore, D., Moment closure hierarchies for kinetic theories, Draft, 29, (1993)
[18] Lukshin, A.; Neunzert, H.; Struckmeier, J., Coupling of navier – stokes and Boltzmann regions, Interim report for the hermes project DPH 6174/91, (1992)
[19] Illner, R.; Struckmeier, J., Boundary value problems for the steady Boltzmann equation, J. statist. phys., 85, 427, (1996) · Zbl 0930.76075
[20] F. Mallinger, September 1996, Couplage adaptatif des équations de Boltzmann et de Navier-Stokes
[21] M. Mallet, 1985, A Finite Element Method for Computational Fluid Dynamics, Stanford University
[22] Nanbu, K., Direct simulation scheme derived from the Boltzmann equation. I. monocomponent gases, J. phys. soc. Japan, 49, 2042, (1980)
[23] Neunzert, H.; Gropengiesser, F.; Struckmeier, J., Computational methods for the Boltzmann equation, (), 111 · Zbl 0709.76121
[24] B. Perthame, 1994, Introduction to the theory of random particle methods for the Boltzmann equation, Advances in Kinetic Theory and Computing: Selected Papers, 1994
[25] F. Shakib, 1988, Finite Element Analysis of the Compressible Euler and Navier-Stokes Equations, Stanford University
[26] Shakib, F.; Hughes, T.J.R.; Johan, Z., A multielement group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis, Comput. methods appl. mech. engrg., 75, (1989) · Zbl 0687.76065
[27] J. Struckmeier, K. Steiner, 1993, A comparison of simulation methods for rarefied gas flows, Arbeitsgruppe technomathematik, Univ. Kaiserslautern
[28] Vicenti, G.V.Walter; Kruger, C.H., Introduction to physical gas dynamics, (1986), Krieger Melbourne
[29] Zhong, X.; MacCormack, R.W.; Chapman, D.R., Stabilization of the Burnett equations and application to hypersonic flows, Aiaa j., 31, 6, (1993) · Zbl 0774.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.