Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. (English) Zbl 0892.35115

The author obtains some inequalities for the eigenvalues of Dirichlet and Neumann boundary problems for general classes of operators (or systems of operators) acting in \(L^2(\Omega)\) (or \(L^2(\Omega, \mathbb{C}^m))\), \(\Omega \subset\mathbb{R}^d\), \(d\geq 1\).
Reviewer: J.Wloka (Kiel)


35P15 Estimates of eigenvalues in context of PDEs
47F05 General theory of partial differential operators


Full Text: DOI Link


[1] Berezin, F.A., Convex functions of operators, Mat. sb., 88, 268-276, (1972)
[2] Berezin, F.A., Covariant and contravariant symbols of operators, Math. USSR izv., 6, 1117-1151, (1972) · Zbl 0259.47004
[3] Birman, M.Sh.; Solomyak, M.Z., The principal term of the spectral asymptotics formula for “non-smooth” elliptic problems, Funktsional. anal. i prilozhan., 4, 1-13, (1970) · Zbl 0225.35077
[4] Ciesielski, Z., On the spectrum of the Laplace operator, Comment. math. prace mat., 14, 41-50, (1970) · Zbl 0242.47030
[5] Kröger, P., Upper bounds for the Neumann eigenvalues on a bounded domains in Euclidean space, J. funct. anal., 106, 353-357, (1992) · Zbl 0777.35044
[6] Kröger, P., Estimates for sums of eigenvalues of the Laplacian, J. funct. anal., 126, 217-227, (1994) · Zbl 0817.35066
[7] Laptev, A., On inequalities for the bound states of Schrödinger operators, Operator theory: advances and applications, 78, (1995), Birkhäuser Verlag Basel, p. 221-225 · Zbl 0833.35032
[8] Laptev, A.; Safarov, Yu., A generalization of the Berezin-Lieb inequality, Amer. math. soc. transl. (2), 175, 69-79, (1996) · Zbl 0868.47016
[9] Levine, H.A.; Protter, M.H., Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problem in elasticity, Math. methods appl. sci., 7, 210-222, (1985) · Zbl 0591.35050
[10] Li, P.; Yau, S.T., On the Schrödinger equation and the eigenvalue problem, Comm. math. phys., 88, 309-318, (1983) · Zbl 0554.35029
[11] Lieb, E.H., The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. sympos. pure math., 36, 241-252, (1980)
[12] Lieb, E.H., The classical limit of quantum spin systems, Comm. math. phys., 31, 327-340, (1973) · Zbl 1125.82305
[13] Metivier, G., Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. soc. math. France, 51-52, 125-229, (1977) · Zbl 0401.35088
[14] Maz’ya, V., Sobolev spaces, (1985), Springer-Verlag Berlin/Heidelberg/New York/Tokyo · Zbl 0727.46017
[15] Payne, L.E.; Pólya, G.; Weinberger, H.F., On the ratio of consecutive eigenvalues, J. math. phys., 35, 289-298, (1956) · Zbl 0073.08203
[16] Pólya, G., On the eigenvalues of vibrating membranes, Proc. London math. soc., 11, 419-433, (1961) · Zbl 0107.41805
[17] Rosenblum, G.V., On the distribution of eigenvalues of the first boundary value problem in unbounded regions, Dokl. akad. nauk. SSSR, 200, 1034-1036, (1971)
[18] Rosenblum, G.V., On the eigenvalues of the first boundary problem in unbounded domains, Mat. sb., 89, 234-247, (1972)
[19] Schoen, R.; Yau, S.T., Lectures on differential geometry, Conference Proceedings and lecture notes in geometry and topology, 1, (1994), International Press · Zbl 0830.53001
[20] Simon, B., Trace ideals and their applications, London mathematics society lecture note series, 35, (1979), Cambridge Univ. Press Cambridge
[21] Singer, I.M.; Wong, B.; Yau, S.T.; Yau, S.S.T., An estimate of the gap of the first two eigenvalues of the Schrödinger operator, Ann. scuola norm. sup. Pisa (4), 12, 319-333, (1985) · Zbl 0603.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.