×

A kinematically exact finite element formulation of planar elastic-plastic frames. (English) Zbl 0892.73070

A finite element formulation of finite deformation static analysis of plane elastic-plastic frames subjected to static loads is presented, in which the only function to be interpolated is the rotation of the centroid axis of the beam. One of the advantages of such a formulation is that the problem of the field-consistency does not arise. Exact nonlinear kinematic relationships of the finite-strain beam theory are used, which assume the Bernoulli hypothesis of plane cross-sections. Finite displacements and rotations as well as finite extensional and bending strains are accounted for. Because the potential energy of internal forces does not exist with elastic-plastic material, the principle of virtual work is introduced as the basis of the finite element formulation. A generalized principle of virtual work is proposed in which the displacements, rotation, extensional and bending strains, and the Lagrangian multipliers are independent variables. The theoretical findings and the performance of the derived finite elements are illustrated by numerical examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74C99 Plastic materials, materials of stress-rate and internal-variable type
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argyris, J. H.; Boni, B.; Hindenlang, U.; Kleiber, M., Finite element analysis of two- and three-dimensional elasto-plastic frames—the natural approach, Comput. Methods Appl. Mech. Engrg., 35, 221-248 (1982) · Zbl 0492.73078
[2] Banovec, J., An efficient finite element method for elastic-plastic analysis of plane frames, (Wunderlich, T.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer), 385-402 · Zbl 0509.73078
[3] Banovec, J., Geometric and material nonlinear analysis of planar frames (in Slovenian), (Doctoral Dissertation (1986), University of Ljubljana: University of Ljubljana Slovenia) · Zbl 0825.73198
[4] Barlow, J., Optimal stress locations in finite element models, Int. J. Numer. Methods Engrg., 10, 243-252 (1976) · Zbl 0322.73049
[5] Bergan, P. G., Some aspects of interpolation and integration in nonlinear finite element analysis of reinforced concrete structures, (Damjanić, F.; etal., Computer Aided Analysis and Design of Concrete Structures (1984), Pineridge Press: Pineridge Press Swansea), 301-316, Part 1
[6] Burgoyne, C. J.; Crisfield, M. A., Numerical integration strategy for plates and shells, Int. J. Numer. Methods Engrg, 29, 105-121 (1990) · Zbl 0724.73287
[7] Chebl, C.; Neale, K. W., A finite element method for elastic-plastic beams and columns at large deflections, Comput. Struct., 18, 255-261 (1984) · Zbl 0523.73056
[8] Cichoń, C., Large displacements in-plane analysis of elastic-plastic frames, Comput. Struct., 19, 737-745 (1984) · Zbl 0547.73050
[9] Coulter, B. A.; Miller, R. E., Loading, unloading and reloading of a generalized plane plastica, Int. J. Numer. Methods Engrg., 28, 1645-1660 (1989) · Zbl 0709.73019
[10] Crisfield, M. A., A consistent co-rotational formulation for non-linear, three-dimensional beam elements, Comput. Methods Appl. Mech. Engrg., 81, 131-150 (1990) · Zbl 0718.73085
[11] Crisfield, M. A., (Non-Linear Finite Element Analysis of Solids and Structures, Vol. 1 (1991), John Wiley & Sons: John Wiley & Sons Chichester) · Zbl 0809.73005
[12] Epstein, M.; Murray, D. W., Large deformation in-plane analysis of elastic beams, Comput. Struct., 6, 1-9 (1976) · Zbl 0355.73053
[13] Fried, I., Nonlinear finite element computation of the equilibrium, stability and motion of the extensional beam and ring, Comput. Methods Appl. Mech. Engrg., 38, 29-44 (1983) · Zbl 0512.73071
[14] Gendy, A. S.; Saleeb, A. F., Generalized yield surface representations in the elasto-plastic three-dimensional analysis of frames, Comput. Struct., 49, 351-362 (1993) · Zbl 0798.73022
[15] Haefner, L.; Willam, K. J., Large deflection formulations of a simple beam element including shear deformations, Engrg. Comput., 1, 359-368 (1984)
[16] Hsiao, K. M.; Hou, F. Y.; Spiliopoulos, K. V., Large displacement analysis of elasto-plastic frames, Comput. Struct., 28, 627-633 (1988) · Zbl 0631.73062
[17] Ibrahimbegović, A.; Frey, F., Finite element analysis of linear and nonlinear deformations of elastic initially curved beams, Int. J. Numer. Methods Engrg., 36, 3239-3258 (1993) · Zbl 0789.73069
[18] Ibrahimbegović, A., On FE implementation of geometrically nonlinear Reissner’s beam theory: Three-dimensional curved beam elements, Comput. Methods Appl. Mech. Engrg., 122, 11-26 (1995) · Zbl 0852.73061
[19] Iura, M., Effects of coordinate system on the accuracy of corotational formulation for Bernoulli-Euler’s beam, Int. J. Solids Struct., 31, 2793-2806 (1994) · Zbl 0943.74531
[20] Jelenić, G.; Saje, M., A kinematically exact space finite strain beam model—Finite element formulation by generalized virtual work principle, Comput. Methods Appl. Mech. Engrg., 120, 131-161 (1995) · Zbl 0852.73062
[21] Kassimali, A., Large deformation analysis of elastic-plastic frames, J. Struct. Engrg. ASCE, 109, 1869-1886 (1983)
[22] Kegl, M.; Butinar, B. J.; Oblak, M. M., Shape optimal design of elastic planar frames with non-linear response, Int. J. Numer. Methods Engrg., 38, 3227-3242 (1995) · Zbl 0849.73044
[23] Kondoh, K.; Atluri, S. N., A simplified finite element method for large deformation, post-buckling analyses of large frame structures, using explicitly derived tangent stiffness matrices, Int. J. Numer. Methods Engrg., 23, 69-90 (1986) · Zbl 0578.73065
[24] Kondoh, K.; Atluri, S. N., Large-deformation, elasto plastic analysis of frames under non conservative loading, using explicitly derived tangent stiffness based on assumed stresses, Comput. Mech., 2, 1-25 (1987) · Zbl 0614.73039
[25] Lanczos, C., The Variational Principles of Mechanics (1970), University of Toronto Press: University of Toronto Press Toronto · Zbl 0138.19705
[26] Liu, J. H.; Stronge, W. J.; Yu, T. X., Large deflections of an elastoplastic strain-hardening cantilever, J. Appl. Mech. ASME, 56, 737-743 (1989) · Zbl 0702.73034
[27] Lubliner, J., Plasticity Theory (1990), Macmillan Publishing Company: Macmillan Publishing Company New York · Zbl 0745.73006
[28] Lui, E. M.; Zhang, C.-Y., Nonlinear frame analysis by the pseudo load method, Comput. Struct., 37, 707-716 (1990)
[29] Meek, J. L.; Loganathan, S., Geometric and material nonlinear behaviour of beam-columns, Comput. Struct., 34, 87-100 (1990) · Zbl 0703.73032
[30] Monasa, F.; Lewis, G., Large deflections of point loaded cantilevers with nonlinear behaviour, J. Appl. Math. Phys. (ZAMP), 34, 124-130 (1983) · Zbl 0503.73026
[31] Pacoste, C.; Eriksson, A., Element behavior in post-critical plane frame analysis, Comput. Methods Appl. Mech. Engrg., 125, 319-343 (1995)
[32] Pak, R. Y.S.; Stauffer, E. J., Nonlinear finite deformation analysis of beams and columns, J. Engrg. Mech. ASCE, 120, 2136-2153 (1994)
[33] Park, M. S.; Lee, B. C., Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von Mises-type hardening material, Int. J. Numer. Methods Engrg., 39, 383-408 (1996) · Zbl 0846.73067
[34] Prathap, G., Field-consistency—toward a science of constrained multi-strain field finite element formulations, Sadhana, 9, 319-344 (1986)
[35] Reid, S. R.; Reddy, T. Y., Effect of strain hardening on the large plastic deformation of a cantilever, J. Appl. Mech. ASME, 45, 953-955 (1978)
[36] Reissner, E., On one-dimensional finite strain beam theory: the plane problem, J. Appl. Math. Phys. (ZAMP), 23, 795-804 (1972) · Zbl 0248.73022
[37] Ridha, R. A.; Lee, L. H.N., Inelastic finite deformation of planar frames, J. Engrg. Mech. Div. ASCE, 97, 773-789 (1971)
[38] Saje, M.; Srpčič, S., Large deformations of in-plane beam, Int. J. Solids Struct., 21, 1181-1195 (1985)
[39] Saje, M., A variational principle for finite planar deformation of straight slender elastic beams, Int. J. Solids Struct., 26, 887-900 (1990) · Zbl 0719.73017
[40] Saje, M., Finite element formulation of finite planar deformation of curved elastic beams, Comput. Struct., 39, 327-337 (1991) · Zbl 0825.73716
[41] Saje, M.; Jelenić, G., Finite element formulation of hyperelastic plane frames subjected to nonconservative loads, Comput. Struct., 50, 177-189 (1994) · Zbl 0800.73431
[42] Shi, G.; Atluri, S. N., Elasto-plastic large deformation analysis of space-frames: A plastic hinge and stress-based explicit derivation of tangent stiffness, Int. J. Numer. Methods Engrg., 26, 589-615 (1988) · Zbl 0635.73053
[43] Simo, J. C.; Hjelmstad, K. D.; Taylor, R. L., Numerical formulations for finite deformation problems of beams accounting for the effect of transverse shear, Comput. Methods Appl. Mech. Engrg., 42, 301-330 (1984) · Zbl 0517.73074
[44] Simo, J. C., A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Comput. Methods Appl. Mech. Engrg., 49, 55-70 (1985) · Zbl 0583.73037
[45] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite-strain rod model. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 58, 79-116 (1986) · Zbl 0608.73070
[46] Simo, J. S.; Kennedy, J. G.; Govindjee, S., Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Numer. Methods Engrg., 26, 2161-2185 (1988) · Zbl 0661.73058
[47] Szilard, R., An energy balancing strategy for solution of combined geometrical and material nonlinear problems, Comput. Struct., 23, 147-162 (1986) · Zbl 0582.73072
[48] Washizu, K., Variational Methods in Elasticity and Plasticity (1981), Pergamon Press: Pergamon Press Oxford · Zbl 0164.26001
[49] Wriggers, P.; Simo, J. S., A general procedure for the direct computation of turning and bifurcation points, Int. J. Numer. Methods Engrg., 30, 155-176 (1990) · Zbl 0728.73069
[50] Xiaoqiang, W.; Tongxi, Y., The complete process of large elastic-plastic deflection of a cantilever, Acta Mech. Sinica, 2, 333-347 (1986)
[51] Zienkiewicz, O. C.; Taylor, R. L., (The finite element method, Vol. 1 (1989), McGraw-Hill Book Company)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.