zbMATH — the first resource for mathematics

A new optimal shape design procedure for inviscid and viscous turbulent flows. (English) Zbl 0892.76071
Summary: A new approach for optimal shape design is introduced. The main ingredients are an unstructured CAD-free framework for geometry deformation and automatic differentiation in reverse mode. Transonic inviscid and viscous turbulent flows are investigated. Both two- and three-dimensional configurations are considered. These cases involve up to several thousand control parameters.

76M30 Variational methods applied to problems in fluid mechanics
76H05 Transonic flows
76F10 Shear flows and turbulence
Full Text: DOI
[1] Optimal Shape Design for Elliptic Systems, Springer, New York, (1984). · doi:10.1007/978-3-642-87722-3
[2] ’Optimum aerodynamic design via boundary control’, AGARD Rep. 803, Von Karman Institute Courses, (1994)
[3] and , ’Optimum shape design using automatic differentiation in reverse mode’, Proc. ICNMFD, Monterey, CA, (1996).
[4] and , Mathematical Models of Turbulence, Academic, New York, (1972).
[5] and , Analysis of the K-Epsilon Turbulence Model, Wiley, New York, (1994).
[6] and , ’Unsteady separated turbulent flows computations with wall-laws and k-\(\epsilon\) model’, Comput. Methods Appl. Mech. Eng., submitted.
[7] ’Steady Euler simulations using unstructured meshes’, VKI Lecture Ser. 1884-04, (1985).
[8] ’CFD with NSC2KE: a user guide’, INRIA Tech. Rep. 164, (1994).
[9] ’Approximate Riemann solvers, parameters vectors and difference schemes’, J. Comput. Phys., 43, (1981).
[10] and , ’Flux vector splitting and Runge- Kutta methods for the Euler equations’, ICASE 84-27, (1984).
[11] Steger, J. Comput. Phys. 40 pp 263– (1983)
[12] and , ’Upwind difference schemes for the hyperbolic systems of conservation laws’, Math. Comput., (1982). · Zbl 0483.65055
[13] and , ’Direct and reverse modes of automatic differentiation of programs for inverse problems: application to optimum shapes design’, Proc. 2nd Int. Workshop on Computational Differentiation, Santa Fé, NM, (1996) SIAM, Philadelphia, PA, 199x.
[14] and , ’La différentiation automatique de fonctions représentées par des programmes’, INRIA Res. Rep. 1557, (1991).
[15] ’Différentiation automatique: application à un probléme d’optimisation en météorologie’, Ph.D. Thesis, University of Nice, (1993).
[16] ’Splitting of algebraic expressions for automatic differentiation’, Proc. 2nd Int. Workshop on Computational Differentiation, Santa Fé, NM, (1996) SIAM, Philadelphia, PA, 199x. · Zbl 0871.65013
[17] and , ’New progress in optimum shapes design’, in CFD Review 95, Wiley, New York, (1996).
[18] Automatic Differentiation and Nonlinear PDE, ECCOMAS, Paris, (1996).
[19] ’Différentiation automatique par programme et optimisation de formes aérodynamiques’, MATAPLI, (1996).
[20] ’Contribution ä la modélisation ët la prédiction d’écoulements turbulents à masse volumique variable’, Ph.D. Thesis, University of Lille, (1983).
[21] and , ’Mesh adaption by metric control for multi-scale phenomena and turbulence’, Proc. 35th AIAA Conf., Reno, NV, (1997) AIAA, New York, 199x.
[22] , , and , ’Progress on multidimensional upwind Euler solvers for unstructured grids’, AIAA Paper 91-1550, (1991).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.