×

zbMATH — the first resource for mathematics

An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. (English) Zbl 0893.60077
Summary: A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less than \(N\), then an equation gives the steady state for size \(N\). Using this recursion, we obtain closed expressions for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power \(-1/2\) instead of the inverse of the distance, as predicted by the mean field theory.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985). · Zbl 0559.60078
[2] R. Kutner,Phys. Lett. A 81:239 (1981).
[3] H. van Beijeren, K. W. Kehr, and R. Kutner,Phys. Rev. B 28:5711 (1983).
[4] P. A. Ferrari,Ann. Prob. 14:1277 (1986). · Zbl 0628.60103
[5] A. De Masi and P. Ferrari,J. Stat. Phys. 36:81 (1984). · Zbl 0594.76004
[6] D. Kandel and E. Domany,J. Stat. Phys. 58:685 (1990); D. Kandel, E. Domany, and B. Nienhuis,J. Phys. A 23:L755 (1990). · Zbl 1086.82555
[7] J. P. Marchand and P. A. Martin,J. Stat. Phys. 44:491 (1986).
[8] D. Dhar,Phase Transitions 9:51 (1987).
[9] J. Krug and H. Spohn, inSolids far from Equilibrium: Growth, Morphology and Defects, C. Godreche, ed. (Cambridge University Press, Cambridge, 1991).
[10] M. Kardar, G. Parisi, and Y. Zhang,Phys. Rev. Lett. 56:889 (1986). · Zbl 1101.82329
[11] J. Krug,Phys. Rev. Lett. 67:1882 (1991).
[12] D. E. Wolf and L. H. Tang,Phys. Rev. Lett. 65:1591 (1990).
[13] D. Kandel and D. Mukamel,Europhys. Lett. (1992), in press.
[14] J. Cook and D. E. Wolf,J. Phys. A 24:L351 (1991).
[15] H. Rost,Z. Wahrsch. Verw. Geb. 58:41 (1981). · Zbl 0451.60097
[16] A. Galves, C. Kipnis, C. Macchioro, and E. Presutti,Commun. Math. Phys. 81:127 (1981). · Zbl 0465.60089
[17] B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn,Phys. Rev. Lett. 67:165 (1991);J. Phys. A 24:4805 (1991). · Zbl 0990.82520
[18] S. A. Janowsky and J. L. Lebowitz,Phys. Rev. A 45:618 (1992). · Zbl 0838.60088
[19] L. H. Gwa and H. Spohn,Phys. Rev. Lett. 68:725 (1992). · Zbl 0969.82526
[20] H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985).
[21] J. Krug, Private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.