×

zbMATH — the first resource for mathematics

Magneto-micropolar fluid motion: Existence and uniqueness of strong solution. (English) Zbl 0893.76006
The local unique solvability is proved for the equations of the magneto-micropolar fluid motion. The Galerkin method is used to achieve the same level of knowledge about strong solution as in the case of the Navier-Stokes equations.

MSC:
76A05 Non-Newtonian fluids
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadi, Int. J. Engng Sci. 12 pp 657– (1974)
[2] and : On the Existence and Regularity of the Solutions of Stokes Problem in Arbitrary Dimension, Proc. Japan Acad. 67, Ser A. (1991), 171–175 · Zbl 0752.35047
[3] Cattabriga, Rend. Mat. Sem. Univ. Padova 31 pp 308– (1961)
[4] Condiff, Phys. Fluids 7 pp 842– (1964)
[5] Duff, Acta Math. 164 pp 145– (1990)
[6] Eringen, J. Math. Mech. 16 pp 1– (1966)
[7] Eringen, Int. J. Engng. Sci. 2 pp 205– (1964)
[8] Fujita, Arch. Rational Mech. Anal. 160 pp 103– (1989)
[9] Galdi, Int. J. Engng. Sci. 15 pp 105– (1977)
[10] Giga, Arch. Rational Mech. Anal. 890 pp 103– (1989)
[11] Heywood, Indiana Univ. Math. J. 29 pp 639– (1980)
[12] Ito, J. Fac. Sci. Univ. Tokyo Sect. IA 90 pp 103– (1961)
[13] Kagei, Hiroshima Math. J. 23 pp 343– (1993)
[14] : The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Second Revised Edition, New York, 1969
[15] : Quelques Méthodesde Résolution de Problèmes aux Limites non Linkaires, Dunod, Paris, 1969
[16] Lukaszewicz, Naz. Sci. XL, Mem. Math. n. 106 pp 83– (1988)
[17] Lukaszewicz, Mem. Math. n. 107 pp 105– (1989)
[18] and : A Uniqueness Theorem for Micropolar Fluid Motions in Unbounded Regions, Bolletino U.M.I. 5, 13-A (1976), 660–666 · Zbl 0355.76007
[19] Prodi, Rend Sem. Mat. Univ. Padova 32 pp 374– (1962)
[20] : Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.