Two-dimensional turbulent viscous flow simulation past airfoils at fixed incidence. (English) Zbl 0893.76055

The authors developed recently a reconstruction method for determining the velocity components at the center of the control volumes from the discretized momentum and continuity equation for time-averaged, turbulent, two-dimensional, incompressible flow by interpolation of values at neighboring grid points. In comparison to other available interpolation methods, the new method offers the advantage that it avoids artificial dissipation. Several turbulence models are introduced in the solution, and several flows around wing sections are computed for complex flow conditions. The various results are evaluated and compared with each other. The paper concludes with the recommendation that grid independence should be judged by comparing values of the velocity rather than values of the pressure. It is also pointed out that the results are influenced by large values of nominal Reynolds number, and, even more severely, by the assumption on the transition criteria.
Reviewer: E.Krause (Aachen)


76M20 Finite difference methods applied to problems in fluid mechanics
76F10 Shear flows and turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI


[1] McCullough, G.B.; Gault, D.E., Examples of three representative types of airfoil-section stall at low speed, Naca tn 2502, (1951)
[2] Shamroth, S.J.; Gibeling, H.J., Navier-Stokes solution of the turbulent flowfield about an isolated airfoil, Aiaa j., 18, 12, 1409-1410, (1980), See also AIAA Paper 79-1543 · Zbl 0454.76011
[3] Sugavanam, A.; Wu, J.C., Numerical study of separated turbulent flow over airfoils, Aiaa j., 20, 4, 464-471, (1982), See also AIAA Paper 80-1441 · Zbl 0486.76018
[4] Hegna, H.A., Numerical solution of incompressible turbulent flow over airfoils near stall, Aiaa j., 20, 1, 29-30, (1982), See also AIAA Paper 81-0047, St. Louis
[5] Rhie, C.M.; Chow, W.L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, Aiaa j., 17, 1525-1532, (1983), See also AIAA Paper 82-998 · Zbl 0528.76044
[6] Barton, J.T.; Pulliam, T.H., Airfoil computation at high angles of attack. inviscid and viscous phenomena, Aiaa j., 24, 5, 705-712, (1986), See also AIAA Paper 84-0524
[7] Sugavanam, A., Evaluation of low Reynolds number turbulence models for attached and separated flows, ()
[8] Rumsey, C.L.; Thomas, J.L.; Warren, G.P.; Liu, G.C., Upwind Navier-Stokes solutions for separated periodic flows, Aiaa j., 25, 4, 535-541, (1987), See also AIAA Paper 86-0247 · Zbl 0616.76046
[9] Tzabiras, G.; Dimas, A.; Loukakis, T., A numerical method for the calculation of incompressible steady separated flows around aerofoils, Int. J. num. meth. fluids, 6, 799-809, (1986) · Zbl 0607.76012
[10] Kogan, A.; Migemi, S., The calculation of incompressible separated turbulent boundary layers, Int. J. num. meth. fluids, 11, 39-56, (1990)
[11] Davidson, L.; Rizzi, A., Navier-Stokes predictions using an algebraic Reynolds-stress model, J. spacecraft rockets, 29, 6, 794-800, (1992), See also AIAA Paper 92-0195
[12] Rogers, S.E.; Wiltberger, N.L.; Kwak, D.C., Efficient simulation of incompressible viscous flow over single and multielement airfoils, ()
[13] Chaput, E.; Tourrette, L.; Undreiner, S., Navier-Stokes 2D et 3D pour la conception aérodynamique des avions de transport, ()
[14] Jin, G.; Braza, M., Two-equation turbulence model for unsteady separated flows around airfoils, Aiaa j., 32, 11, 1320-2316, (1994)
[15] Chevallier, G., Prévision du décrochage de profils d’aile par résolution des équations de Navier-Stokes moyennées, Thèse de doctorat ENSAE, (1994)
[16] Yang, H.Q.; Przekwas, A.J., Pressure-based high-order TVD methodology for dynamic stall simulation, ()
[17] Ekaterinaris, J.A.; Menter, F.R., Computation of oscillating airfoil flows with one- and two-equation turbulence models, Aiaa j., 32, 12, 2359-2365, (1994)
[18] Lien, F.S.; Leschziner, M.A., Modelling 2D separation from a high lift aerofoil with a non-linear eddy-viscosity model and second-moment closure, Aero. J., 125-144, (1995)
[19] Menter, F.R., Zonal two-equation K-ω turbulence models for aerodynamic flows, () · Zbl 1425.76107
[20] Hodge, J.K.; Stone, A.L.; Miller, T.E., Numerical solutions for airfoils near stall in optimized boundary-fitted curvilinear coordinate, Aiaa j., 17, 5, 458-464, (1979) · Zbl 0398.76009
[21] Rogers, S. E. and Kwak, D. C., An upwind differencing scheme for the time accurate incompressible Navier-Stokes equations. AIAA Paper 88-2583-CP. · Zbl 0693.76041
[22] Shamroth, S.J.; Gibeling, H.J., Analysis of turbulent flow about an isolated airfoil using a time-dependent Navier-Stokes procedure, Ard cp 296, (1980) · Zbl 0454.76011
[23] Baldwin, B.S.; Lomax, H., Thin layer approximation and algebraic model for separated turbulent flows, AIAA paper 78-0257, (1978)
[24] Baldwin, B.S.; Barth, T.A., One-equation turbulence transport modle for high Reynolds number wall-bounded flows, ()
[25] Nee, V.W.; Kovasznay, L.S.G., Simple phenomenological theory of turbulent shear flows, Phys. fluids, 12, 3, 473-483, (1969) · Zbl 0176.54603
[26] Rizzetta, D.P.; Visbal, M.P.; Rizzetta, D.P.; Visbal, M.P., Comparative numerical study of two turbulence models for airfoil static and dynamic stall, (), 31, 4, 784-786, (1993), See also
[27] Schneider, G.E.; Raw, M.J., Control-volume finite element method for heat transfer and fluid flow using colocated variables, Numer. heat transfer, 11, 363-400, (1987) · Zbl 0631.76107
[28] Deng, G.B.; Guilmineau, E.; Piquet, J.; Queutey, P.; Visonneau, M., Computation of unsteady laminar viscous flow past an airfoil using the CPI method, Int. J. num. meth. fluids, 19, 9, 765-794, (1994) · Zbl 0824.76062
[29] Deng, G.B.; Piquet, J.; Queutey, P.; Visonneau, M., Incompressible flow with a consistent physical interpolation finite volume approach, Comp. fluids, 23, 8, 1029-1047, (1994) · Zbl 0816.76066
[30] Deng, G.B.; Piquet, J.; Queutey, P.; Visonneau, M., A new fully coupled solution of the Navier-Stokes equations, Int. J. num. meth. fluids, 19, 605-639, (1994) · Zbl 0815.76054
[31] Spalding, D.B., A novel finite difference formulation for differential expressions involving both first and second order derivatives, Int. J. num. meth. engng, 4, 551-559, (1972)
[32] Issa, R., Solution of the implicity discretized fluid equations by operator-splitting, J. comp. phys., 62, 40-65, (1985) · Zbl 0619.76024
[33] Coles, D.; Wadcock, A.J., Flying-hot-wire study of flow past a NACA4412 airfoil at maximum lift, Aiaa j., 17, 4, 321-329, (1979)
[34] James, R.M., A new look at two-dimensional incompressible airfoil theory, ()
[35] Halsey, N.D., Potential flow analysis of multiple bodies using conformal mapping, () · Zbl 0417.76012
[36] Gleyzes, C., Opération décrochage—Résultats d’essais à la soufflerie F2 (mesures de pression et vélocimétrie laser), Rapport techn. OA 71/2259 AYD (DERAT 57/5004.22), (1989)
[37] Gleyzes, C., Opération décrochage—Résultats des essais à la soufflerie F2, Rapport techn. OA 71/2259 AYD (DERAT 55/5004-22), (1988)
[38] McGhee, R.J.; Beasley, W.D., Low-speed aerodynamic characteristics of a 17-percent-thick airfoil section designed for general aviation applications, Nasa tn d-7428, n74-11821, (1973)
[39] Pinkerton, R.M., The variation with Reynolds number of pressure distribution over an airfoil section, NACA report, 613, (1938)
[40] Hastings, R.C.; Williams, B.R., Studies of the flow field near a NACA4412 aerofoil at nearly maximum lift, RAE technology memorandum aero, 2026, (1984)
[41] Houdeville, R.; Piccin, O.; Cassoudesalle, C., Opération décrochage. mesures de frottement sur profils AS239 et AS240 à la soufflerie F2, Rapport techn. OA 71/2259 AYD (DERAT 55/5004-22), (1988)
[42] ()
[43] Mehta, J.M.; Goradia, S., Experimental studies of the seperated flow over a NASA GA(W)-1 airfoil, Aiaa j., 22, 4, 552-554, (1984)
[44] Stevens, W.A.; Mehta, J.M.; Shrewsbury, G.S., Mathematical model for two-dimensional multi-component airfoils in viscous flow, Nasa CR-1845, (1971)
[45] Sandborne, V.A.; Kline, S.J., Flow models in boundary layer stall inception, J. basic engng trans. ASME, 83, 317-327, (1961)
[46] Mabey, D.G., Review of the normal force fluctuations on aerofoils with separated flow, Progress aerosp. sci., 29, 43-80, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.