Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. (English) Zbl 0894.34036

The author studies the system \(\ddot x= W'(z,t)= 0\), with \(x(0)= x(T)\), \(\dot x(0)= \dot x(T)\), where \(W(x,t)= \langle A(t)x,x\rangle+ b(t)V(x)\). Here, \(b\) is a continuous \(T\)-periodic function, \(V\in C^2(\mathbb{R}^N\times \mathbb{R})\) has superquadratic behavior, \(A\) is a continuous \(T\)-periodic symmetric matrix function, with \(\langle A(t)\xi,\xi\rangle> 0\), for all \(\xi\in \mathbb{R}^N\), and \(|\xi|= 1\).
The author shows that if \(\lim_{x\to 0} V(x)/| x^2|= 0\), and \(\int^T_0 b(t)dt> 0\) then the system has a \(T\)-periodic solution. With some additional assumptions including \(\int^T_0 b(t)dt< 0\) (reversing the sign) it also follows that a \(T\)-periodic solution exists. Using a variational approach, she proves that the corresponding Lagrangian action integral \[ {1\over 2}\int^T_0| \dot x^2| dt-{1\over 2}\int^T_0 [\langle A(t)x,x\rangle+ b(t)V(x)]dt \] has a critical point in an appropriately chosen finite subspace of the original Hilbert space \(H^1\).
Reviewer: V.Komkov (Roswell)


34C25 Periodic solutions to ordinary differential equations
Full Text: DOI


[1] Lassoued, L., Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign, Ann. Math. Pura Appl., 156, 76-111 (1990) · Zbl 0724.34051
[2] Lassoued, L., Periodic solutions of a second order superquadratic system with a change of sign in the potential, J. Diff. Eq., 93, 1-18 (1991) · Zbl 0736.34041
[3] Ben Naoum, A. K.; Trostler, C.; Willem, M., Existence and multiplicity results for homogeneous second order differential equations, J. Diff. Equations, 112, 239-249 (1994) · Zbl 0808.58013
[4] Alama, S.; Tarantello, G., On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Diff. Eq., 1, 439-475 (1993) · Zbl 0809.35022
[5] Girardi, M.; Matzeu, M., Existence and multiplicity results for periodic solutions for superquadratic Hamiltonian systems where the potential changes sign, No. D.E.A., 2, 35-61 (1995) · Zbl 0821.34041
[6] Ambrosetti, A.; Mancini, G., Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255, 405-421 (1981) · Zbl 0466.70022
[7] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89, 177-194 (1993) · Zbl 0806.58018
[8] Coti Zelati, V.; Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potential, J. Ann. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[9] Ding, Y. H.; Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potential changing sign, Dynamical Syst. and Appl., 2, 131-145 (1993) · Zbl 0771.34031
[10] Caldiroli, P.; Montecchiari, P., Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. on Appl. Nonlinear Anal., 1, 97-129 (1994) · Zbl 0867.70012
[11] Antonacci, F., Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign, Boll. Unione Mat. Ital., 10-B, 303-324 (1996) · Zbl 1013.34038
[12] Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31, 157-184 (1978) · Zbl 0358.70014
[13] Benci, V.; Rabinowitz, P. H., Critical point theorems for indefinite functionals, Invent. Math., 52, 241-273 (1979) · Zbl 0465.49006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.