×

On power functions and error estimates for radial basis function interpolation. (English) Zbl 0895.41013

The approximation error analysis for interpolation in a variational setting is used to derive the power function estimate of the error.

MSC:

41A30 Approximation by other special function classes
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Apostol, T., Mathematical Analysis (1974)
[2] Deny, J.; Lions, J. L., Les espaces du type de Beppo Levi, Ann. Inst. Fourier, 5, 305-370 (1954) · Zbl 0065.09903
[3] Duchon, J., Sur l’erreur d’interpolation des fonctions de plusieurs variables par les\(D^m\)-splines, RAIRO Anal. Numer., 12, 325-334 (1978) · Zbl 0403.41003
[4] Duchon, J., Splines minimising rotation-invariant seminorms in Sobolev spaces, (Schempp, W.; Zeller, K., Constructive theory of Functions of Several Variables. Constructive theory of Functions of Several Variables, Lecture Notes in Mathematics, 571 (1977), Springer-Verlag: Springer-Verlag Berlin), 85-100
[5] Ciarlet, P. G., The finite element method for elliptic problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[6] Golomb, M.; Weinberger, H. F., Optimal approximation and error bounds, (Langer, R. E., On Numerical Approximation (1959), University of Wisconsin Press: University of Wisconsin Press Madison), 117-190
[8] Madych, W.; Nelson, S., Multivariate interpolation and conditionally positive definite functions, J. Approx. Theory Appl., 4, 77-89 (1988) · Zbl 0703.41008
[10] Powell, M. J.D., The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math., 68, 107-128 (1994) · Zbl 0812.41005
[11] Rudin, W., Functional Analysis (1973), McGraw-Hill: McGraw-Hill New York · Zbl 0253.46001
[12] Schaback, R., A comparison of radial basis function interpolants, (Jetter, K.; Utreras, F., Multivariate approximation—from CAGD to wavelets (1993), World Scientific: World Scientific London), 293-305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.