# zbMATH — the first resource for mathematics

Parabolic Monge-Ampère equations on Riemannian manifolds. (English) Zbl 0895.58053
The author considers on a compact Riemannian manifold $$(M,g)$$ the parabolic Monge-Ampère equation ${{\partial}\over{\partial t}}\varphi (x,t)=\log\left({{\det\Bigl(g(x)+\text{ Hess}\varphi (x,t)\Bigr)}\over{\det g(x)}}\right)-\lambda\varphi (x,t)-f(x),\quad \varphi(x,0)=\varphi_0(x),$ where $$\lambda\in\mathbb{R}$$ is a parameter and $$\varphi_0,f\in C^\infty(M,\mathbb{R}).$$ She shows global existence in time, independently of $$\lambda.$$ Moreover, when $$\lambda >0$$, she proves that $$\varphi_t=\varphi(\cdot,t)$$ exponentially converges as $$t\to +\infty$$ to a solution $$\varphi_\infty$$ of the stationary problem and that, when in addition $$f=0$$, one has the existence of $$\delta, c>0$$ (depending on $$\varphi_0$$ and $$| \nabla^i\varphi| _\infty$$, $$i=0,1,2,3)$$ such that $\int_M\bigl(\varphi_t -\overline{\varphi_t}\bigr)^2 d\text{ Vol}_g\leq c\exp\Bigl(-2(\mu_1+\lambda+e^{-\delta t})t\Bigr),$ where $$\overline\varphi$$ denotes the mean value of $$\varphi$$ and $$\mu_1$$ is the first eigenvalue of the Laplacian.

##### MSC:
 58J35 Heat and other parabolic equation methods for PDEs on manifolds 58J50 Spectral problems; spectral geometry; scattering theory on manifolds
##### Keywords:
parabolic Monge-Ampère equations
Full Text:
##### References:
  Alexandrov, A. D., Dirichlet’s problem for the equation det‖Z_ij‖=φ, Vestnik Leningrad Univ., 13, 5-24, (1958)  Aubin, T., Nonlinear Analysis on Manifolds, Monge-Ampère Equations, (1982), Springer-Verlag New York  Bakelman, I. J., Convex Analysis and Nonlinear Geometric Elliptic Equations, (1994), Springer-Verlag Berlin/Heidelberg · Zbl 0721.35017  Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations I: monge – ampère equations, Comm. Pure Appl. Math., 37, 339-402, (1984) · Zbl 0598.35047  Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations III: functions of the eigenvalues of the Hessian, Acta Math., 155, 261-301, (1985) · Zbl 0654.35031  Caffarelli, L.; Nirenberg, L.; Spruck, J., Nonlinear second-order elliptic equations V: the Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math., 41, 47-70, (1988) · Zbl 0672.35028  Calabi, E., Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J., 5, 105-126, (1958) · Zbl 0113.30104  Cao, H.-D., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81, 359-372, (1985) · Zbl 0574.53042  Cheng, S.-Y.; Yau, S.-T., On the regularity of the solutions of then, Comm. Pure Appl. Math., 29, 495-516, (1976) · Zbl 0363.53030  Delanoë, P., Équations du type monge – ampère sur LES variétés riemanniennes compactes I, J. Funct. Anal., 40, 358-386, (1980) · Zbl 0466.58029  Delanoë, P., Équations du type monge – ampère sur LES variétés riemanniennes compactes II, J. Funct. Anal., 41, 341-353, (1981) · Zbl 0474.58023  Delanoë, P., Équations du type monge – ampère sur LES variétés riemanniennes compactes III, J. Funct. Anal., 45, 403-430, (1982) · Zbl 0497.58026  Eidel’man, S. D., Parabolic Systems, (1969), North-Holland Amsterdam · Zbl 0181.37403  Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, (1983), Springer-Verlag New York · Zbl 0691.35001  Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 255-306, (1982) · Zbl 0504.53034  Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order, (1987), Reidel Boston · Zbl 0619.35004  Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations, (1984), Springer-Verlag New York · Zbl 0153.13602  Oliker, V. I., Hypersurfaces inR^nwith prescribed Gaussian curvature and related equations of monge – ampère type, Comm. Partial Differential Equations, 9, 807-838, (1984) · Zbl 0559.58031  Oliker, V. I., Evolution of nonparametric surfaces with speed depending on corvature, I. the Gauss curvature case, Indiana Univ. Math. J., 40, 237-258, (1991) · Zbl 0737.53002  Oliker, V. I.; Uraltseva, N. N., Evolution of nonparametric surfaces with speed depending on curvature II. the mean curvature case, Comm. Pure Appl. Math., 46, 97-135, (1993) · Zbl 0808.53004  Pogorelov, A. V., The Minkowski Multidimensional Problem, (1978), V. H. Winston Washington  Schulz, F., Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, (1990), Springer-Verlag Berlin/Heidelberg  Trudinger, N. S., The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111, 153-179, (1990) · Zbl 0721.35018  Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex monge – ampère equations, I, Comm. Pure Appl. Math., 31, 339-411, (1978) · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.