×

On the construction of simultaneous methods for multiple zeros. (English) Zbl 0895.65019

The authors present two approaches for construction of new simultaneous methods for finding multiple zeros of a polynomial \(f\). The first approach is based on approximation of the quotient \(f''/f'\). For the second the Weierstrass’ correction is employed to obtain simultaneous methods of higher order.
Reviewer: A.Roose (Tallinn)

MSC:

65H05 Numerical computation of solutions to single equations
26C10 Real polynomials: location of zeros
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
12Y05 Computational aspects of field theory and polynomials (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hansen, E.; Patrick, M., A family of root finding methods, Numer. math., 27, 257-269, (1977) · Zbl 0361.65041
[2] Gargantini, I., Further applications of circular arithmetic: Schröder-like algorithms with error bounds for finding zeros of polynomials, SIAM J. numer. anal, 15, 497-510, (1978) · Zbl 0384.65020
[3] Maehly, V.H., Zur iterativen auflösung algebraischer gleichungen, Z. angew. math. phys., 5, 260-263, (1954) · Zbl 0055.11102
[4] Osada, N., An optimal multiple root-finding method of order three, J. appl. comput. math., 51, 131-133, (1994) · Zbl 0814.65045
[5] Petković, Lj.; Zivković, D., On an accelerated Laguerre’s method for finding zeros of a polynomial, (), 55-63 · Zbl 1009.65506
[6] Petković, M., ()
[7] Weierstrass, K., Neuer beweis des satzes, dass jede ganze rationale funktion einer veränderlichen dargestellt werden kann als ein produkt aus linearen funktionen derselben veränderlichen, (), 251-269, (Johnson Reprint Corp., New York, 1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.