×

Phase synchronization of chaotic oscillators by external driving. (English) Zbl 0898.70015

Summary: We extend the notion of phase locking to the case of chaotic oscillators. Different definitions of the phase are discussed, and the phase dynamics of a single self-sustained chaotic oscillator subjected to external force is investigated. We describe regimes where the amplitude of the oscillator remains chaotic and the phase is synchronized by the external force. This effect is demonstrated for periodic and noisy driving. This phase synchronization is characterized via direct calculation of the phase, as well as by implicit indications, such as the resonant growth of the discrete component in the power spectrum and the appearance of a macroscopic average field in an ensemble of driven oscillators. The Rössler and the Lorenz systems are shown to provide examples of different phase coherence properties, with different response to the external force. A relation between the phase synchronization and the properties of the Lyapunov spectrum is discussed.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
70K40 Forced motions for nonlinear problems in mechanics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hugenii, C., Horoloqium Oscilatorium (1673), Parisiis: Parisiis France
[2] Andronov, A.; Vitt, A.; Khaykin, S., Theory of Oscillations (1966), Pergamon Press: Pergamon Press Oxford
[3] Hayashi, C., Nonlinear Oscillations in Physical Systems (1964), McGraw-Hill: McGraw-Hill New York · Zbl 0192.50605
[4] Blekhman, I., Synchronization of Dynamical Systems (1981), Nauka: Nauka Moscow, (in Russian) · Zbl 0556.70030
[5] Blekhman, I., Synchronization in Science and Technology (1981), Nauka: Nauka Moscow, (in Russian) (English translation: ASME Press, New York, 1988) · Zbl 0508.70019
[6] Fujisaka, H.; Yamada, T., Progr. Theoret. Phys., 69, 32 (1983)
[7] Pikovsky, A. S., Z. Physik B, 55, 149 (1984)
[8] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990)
[9] Landa, P. S.; Rosenblum, M. G., Sov. Phys. Dokl., 37, 237 (1992)
[10] Landa, P. S.; Rosenblum, M. G., Appl. Mech. Rev., 46, 414 (1993)
[11] Kuznetsov, Y.; Landa, P.; Ol’khovoi, A.; Perminov, S., Sov. Phys. Dokl., 30, 221 (1985)
[12] Kocarev, L.; Shang, A.; Chua, L. O., Int. J. Bifurc. and Chaos, 3, 479 (1993)
[13] Bezaeva, L.; Kaptsov, L.; Landa, P. S., Zhurnal Tekhnicheskoi Fiziki, 32, 467 (1987), (in Russian)
[14] Dykman, G.; Landa, P.; Neymark, Y., Chaos, Solitons and Fractals, 1, 339 (1992)
[15] Landa, P.; Perminov, S., Electronics, 28, 285 (1985)
[16] Anischenko, V.; Vadivasova, T.; Postnov, D.; Safonova, M., Int. J. Bifurc. and Chaos, 2, 633 (1992)
[17] Rosenblum, M.; Pikovsky, A.; Kurths, J., Phys. Rev. Lett., 76, 1804 (1996)
[18] Pikovsky, A. S., Soviet J. Comm. Tech. Electronics, 30, 85 (1985)
[19] Stone, E. F., Phys. Lett. A, 163, 367 (1992)
[20] Pikovsky, A.; Rosenblum, M.; Kurths, J., Europhys. Lett., 34, 165 (1996)
[21] Osipov, G.; Pikovsky, A.; Rosenblum, M.; Kurths, J., Phys. Rev. E, 55, 2353 (1997)
[22] Parlitz, U.; Junge, L.; Lauterborn, W.; Kocarev, L., Phys. Rev. E, 54, 2115 (1996)
[23] Brunnet, L.; Chaté, H.; Manneville, P., Physica D, 78, 141 (1994)
[24] Goryachev, A.; Kapral, R., Phys. Rev. Lett., 76, 1619 (1996)
[25] Pikovsky, A. S., Radiophysics and Quantum Electronics, 27, 576 (1984)
[26] Pikovsky, A. S., (Sagdeev, R. Z., Nonlinear and Turbulent Processes in Physics (1984), Harwood: Harwood Singapore), 1601-1604
[27] Ott, E., Chaos in Dynamical Systems (1992), Cambridge University Press: Cambridge University Press Cambridge
[28] Risken, H. Z., The Fokker-Planck Equation (1989), Springer: Springer Berlin · Zbl 0665.60084
[29] Stratonovich, R. L., Topics in the Theory of Random Noise (1963), Gordon and Breach: Gordon and Breach New York · Zbl 0119.14502
[30] Shalfeev, V. D., (Shakhgildyan, V. V.; Belyustina, L. N., Phase Synchronization Systems (1982), Radio i Svjaz: Radio i Svjaz Moscow), 95-104, (in Russian)
[31] Cornfeld, I. P.; Fomin, S. V.; Sinai, Ya. G., Ergodic Theory (1982), Springer: Springer New York · Zbl 0493.28007
[32] Panter, P., Modulation, Noise, and Spectral Analysis (1965), McGraw-Hill: McGraw-Hill New York
[33] Gabor, D., J. IEE London, 93, 429 (1946)
[34] Smith, M. J.T.; Mersereau, R. M., Introduction to Digital Signal Processing. A Computer Laboratory Textbool (1992), Wiley: Wiley New York
[35] Farmer, J. D., Phys. Rev. Lett., 47, 179 (1981)
[36] Rössler, O. E., Phys. Lett. A, 57, 397 (1976)
[37] Farmer, J. D., Ann. N.Y. Acad. Sci., 357, 453 (1980)
[38] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963)
[39] Queffélec, M., Substitution Dynamical Systems — Spectral Analysis, (Lecture Notes in Mathematics, Vol. 1294 (1987), Springer: Springer Berlin) · Zbl 0642.28013
[40] Heagy, J. F.; Carroll, T. L.; Pecora, L. M., Phys. Rev. E, 50, 1874 (1994)
[41] Yu, L.; Ott, E.; Chen, Q., Phys. Rev. Lett., 65, 2935 (1990)
[42] Freeman, W., Int. J. Bifurc. and Chaos, 2, 451 (1992)
[43] Winful, H. G.; Rahman, L., Phys. Rev. Lett., 65, 1575 (1990)
[44] Winful, H. G.; Wang, S. S.; DeFreez, R. K.; Yu, N., (Vohra, S.; etal., Proc. 1st Experiment. Chaos Conf.. Proc. 1st Experiment. Chaos Conf., Arlington, VA, October 1991 (1992), World Scientific: World Scientific Singapore), 77-91
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.