Mirror symmetry for two-parameter models. I. (English) Zbl 0899.14017

Summary: We study, by means of mirror symmetry, the quantum geometry of the Kähler-class parameters of a number of Calabi-Yau manifolds that have \(b_{11} = 2.\) Our main interest lies in the structure of the moduli space and in the loci corresponding to singular models. This structure is considerably richer when there are two parameters than in the various one-parameter models that have been studied hitherto. We describe the intrinsic structure of the point in the (compactification of the) moduli space that corresponds to the large complex structure or classical limit. The instanton expansions are of interest owing to the fact that some of the instantons belong to families with continuous parameters. We compute the Yukawa couplings and their expansions in terms of instantons of genus zero. By making use of recent results of Bershadsky and others we compute also the instanton numbers for instantons of genus one. For particular values of the parameters the models become birational to certain models with one parameter. The compactification divisor of the moduli space thus contains copies of the moduli spaces of one-parameter models. Our discussion proceeds via the particular models \(P_4^{1,1,2,2,2}\) [P. M. H. Wilson, Invent. Math. 107, No. 3, 561-593 (1992; Zbl 0766.14035)] and \(P_4^{1,1,2,2,6}\) [P. Berglund, P. Candelas, X. de la Ossa, A. Font, T. Hübsch, D. Jančić and F. Quevedo, Nucl. Phys., B 419, No. 2, 352-403 (1994; Zbl 0896.14022)].
[See also part II of this paper, Nucl. Phys., B 429, No. 3, 626-674 (1994; see the following review)].


14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14D20 Algebraic moduli problems, moduli of vector bundles
32Q15 Kähler manifolds
Full Text: DOI arXiv


[1] Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L., Nucl. Phys., B359, 21 (1991)
[2] Morrison, D. R., Picard-Fuchs equations and mirror maps for hypersurfaces, (Yau, S. T., Essays on mirror symmetry (1992), International Press: International Press Hong Kong) · Zbl 0904.32020
[3] Font, A., Nucl. Phys., B391, 358 (1993)
[4] Klemm, A.; Theisen, S., Nucl. Phys., B389, 153 (1993)
[5] Aspinwall, P. S.; Greene, B. R.; Morrison, D. R., Nucl. Phys., B416, 414 (1994)
[6] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Nucl. Phys., B405, 279 (1993), with an appendix by S. Katz
[8] Wilson, P. M.H., Invent. Math., 107, 561 (1992)
[9] Greene, B. R.; Plesser, M. R., Nucl. Phys., B338, 15 (1990)
[10] Libgober, A.; Teitelbaum, J., Intern. Math. Res. Notices, 29 (1993)
[13] Markushevich, D. G., Resolution of singularities (toric method), Commun. Math. Phys., 111, 247 (1987), appendix to D.G. Markushevich, M.A. Olshanetsky and A.M. Perelomov
[14] Ceresole, A.; D’Auria, R.; Ferrara, S.; Lerche, W.; Louis, J., Intern. J. Mod. Phys., A8, 79 (1993)
[16] Landman, A., Trans. Amer. Math. Soc., 181, 89 (1973)
[17] Cadavid, A. C.; Ferrara, S., Phys. Lett., B267, 193 (1991)
[18] Blok, B.; Varchenko, A., Intern. J. Mod. Phys., A7, 1467 (1992)
[19] Lerche, W.; Smit, D. J.; Warner, N. P., Nucl. Phys., B372, 87 (1992)
[20] Deligne, P., Equations différentielles à points singuliers réguliers, (Lecture notes in mathematics, Vol. 163 (1970), Springer: Springer Berlin) · Zbl 0244.14004
[21] Katz, N., Publ. Math. IHES, 39, 175 (1971)
[23] Aspinwall, P. S.; Greene, B. R.; Morrison, D. R., Intern. Math. Res. Notices, 319 (1993)
[24] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties (November 1992), preprint
[25] Roan, S.-S., Intern. J. Math., 2, 439 (1991)
[26] Oda, T.; Park, H. S., Tôhoku Math. J., 43, 375 (1991)
[27] Batyrev, V. V., Duke Math. J., 69, 349 (1992)
[28] Aspinwall, P. S.; Morrison, D. R., Commun. Math. Phys., 151, 245 (1993)
[29] Witten, E., Nucl. Phys., B403, 159 (1993)
[33] Klemm, A.; Theisen, S., Mirror maps and instanton sums for complete intersections in weighted projective space, preprint LMU-TPW-93-08 (1993)
[34] McDuff, D., Invent. Math., 89, 13 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.