×

Large-scale Kolmogorov flow on the beta-plane and resonant wave interactions. (English) Zbl 0899.76230

Summary: The large-scale dynamics of the Kolmogorov flow near its threshold of instability is studied in the presence of the \(\beta\)-effect (Rossby waves). The governing equation, obtained by a multiscale technique, fails the Painlevé test of integrability when \(\beta\neq 0\). This \(\beta\)-Cahn-Hilliard equation with cubic nonlinearity is simulated numerically in various régimes. The dispersive action of the waves modifies the inverse cascade associated with the Kolmogorov flow. For small values of \(\beta\) the inverse cascade is interrupted at a wavenumber which increases with \(\beta\). For large values of \(\beta\) only resonant wave interactions (RWI) survive. An original approach to RWI is developed, based on a reduction to normal form, of the sort used in celestial mechanics. Otherwise, wavenumber discreteness effects, which are dramatic in the present case, are not captured. (The method is extendable to arbitrary RWI problems.) The only four-wave resonances present involve two pairs of opposite wavenumbers. This allows leading-order decoupling of moduli and phases of the various Fourier modes, so that an exact kinetic equation is obtained for the energies of the modes. It has a Lyapunov (gradient flow) functional formulation and multiple attracting steady-states, each with a single mode excited.

MSC:

76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Meshalkin, L.D.; Sinai, Ia.G., Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, Appl. math. mech., 25, 1700-1705, (1961) · Zbl 0108.39501
[2] Nepomoyashchyi, A.A., On the stability of the secondary flow of a viscous fluid in an infinite domain, Appl. math. mech., 40, 886-891, (1976)
[3] Sivashinsky, G.I., Weak turbulence in periodic flows, Physica D, 17, 243-255, (1985) · Zbl 0577.76045
[4] Dubrulle, B.; Frisch, U., The eddy viscosity of parity-invariant flow, Phys. rev. A, 43, 5355-5364, (1991) · Zbl 1088.83505
[5] She, Z.S., Metastability and vortex pairing in the Kolmogorov flow, Phys. lett. A, 124, 161-164, (1987)
[6] Zakharov, V.E.; L’vov, V.S.; Falkovich, G., Kolmogorov spectra of turbulence I, (1992), Springer Berlin · Zbl 0786.76002
[7] L’vov, V.S., Wave turbulence under parametric excitation, Springer series in nonlinear dynamics, (1994), Springer Berlin
[8] Litvak, M.M., A transport equation for magneto-hydrodynamic waves, Avco-Everett research report, 92, (1960)
[9] Hasselmann, K., On the non-linear energy transfer in a gravity wave spectrum. part 1: general theory, J. fluid mech., 12, 481-500, (1962) · Zbl 0107.21402
[10] Hasselmann, K., On the non-linear energy transfer in a gravity wave spectrum. part 2: conservation theorems, wave-particle analogy, irreversibility, J. fluid mech., 15, 273-281, (1963) · Zbl 0116.43401
[11] Benney, D.J.; Saffman, P.G., Nonlinear interaction of random waves in a dispersive medium, (), 301-320
[12] Benney, D.J.; Newell, A.C., Random wave closures, Stud. appl. math., 48, 29-53, (1969) · Zbl 0185.55404
[13] Zakharov, V.E.; L’vov, V.S.; Starobinets, S.S., Stationary nonlinear theory of parametric excitation of waves, Sov. phys. JETP, 32, 656-663, (1971)
[14] Pedlosky, J., Geophysical fluid dynamics, (1982), Springer Berlin
[15] Holton, J.R., An introduction to dynamic meteorology, (1979), Academic Press New York
[16] Novick-Cohen, A.; Segel, L.A., Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10, 277-298, (1984)
[17] A.A. Nepomnyashchyi, private communication (1988).
[18] Painlevé, P., Leçons sur la théorie analytique des équations differentielles, (1897), Hermann Paris · JFM 28.0262.01
[19] Kowakevski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta math., 12, 177-232, (1889) · JFM 21.0935.01
[20] Kowalevski, S., Sur une propriété du système d’équations différentialles qui définit la rotation d’un corps solide autour d’un point fixe, Acta math., 14, 81-93, (1890-1891) · JFM 22.0921.02
[21] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[22] Kawasaki, K.; Ohta, T., Kink dynamics in one-dimensional nonlinear systems, Physica A, 116, 573-593, (1982)
[23] Arnold, V.I.; Kozlov, V.V.; Neishtadt, A., Mathematical aspects of classical and celestial mechanics, (), 1-291 · Zbl 0885.70001
[24] Kuksin, S.B., KAM-theory for partial differential equations, (), 123-157 · Zbl 0821.35130
[25] Williams, J.G., Secular perturbations in the solar system, ()
[26] Yuasa, M., Theory of secular perturbations of asteroids including terms of higher order and higher degree, Publ. astr. soc. Japan, 25, 399-445, (1973)
[27] Morbidelli, A.; Henrard, J., Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location, Celest. mech., 51, 131-167, (1991) · Zbl 0850.70122
[28] Breizman, B.N., The establishment of a stationary turbulence spectrum due to induced scattering of waves by particles, Sov. phys. JETP, 45, 271-272, (1977)
[29] L’vov, V.S., Nonlinear theory of the parametric excitation of waves, Sov. phys. JETP, 42, 1057-1063, (1976)
[30] Frisch, U., Turbulence: the legacy of A.N. Kolmogorov, (1995), Cambridge University Press Cambridge
[31] Gama, S.; Vergassola, M.; Frisch, U., Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics, J. fluid mech., 260, 95-126, (1994)
[32] Hille, E., Ordinary differential equations in the complex domain, (1976), Wiley New York · Zbl 0343.34007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.